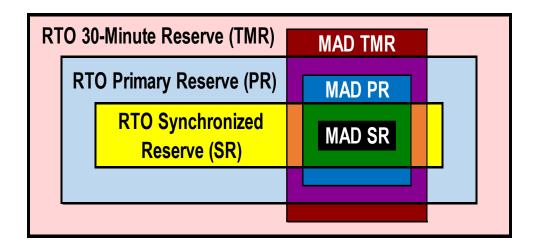
RCSTF IMM Proposal Options

RCSTF November 18, 2025 **IMM**


Overview

 This presentation provides an update and review of the IMM's RCSTF proposal.

 Slides that were include in the <u>last presentation</u> are indicated with an asterisk.*

IMM Proposal Options

- The IMM proposal will be based on the existing reserve products and pricing structure
- Incorporating reserves to capture uncertainty in the net load forecast error and generation.

30 Minute Uncertainty Reserves*

 The purpose of secondary reserves is to cover uncertainty and to support the market when primary reserves have been deployed.

- The requirement for 30 minute reserves should be based on
 - net load forecast error
 - forced outage risk, to the extent not covered by primary reserves

IMM Options: 30 Minute Reserves

- Uncertainty reserves only for the full reserve requirement
- Include net load forecast error and generator performance
- The uncertainty is the difference between the forecasts for the 30 minute and 2 hour look ahead times.
- The reserve requirement will be sufficient to cover the historic uncertainty at a defined percentile.
- The IMM will provide data, examples, and details of the calculation.
- No process for extensions of the reserve requirement.

5

30 Minute Reserves Supply*

- The June peak load event shows that 30 min demand response was used as reserves.
- Exports are recallable.
- Max emergency generation can be called.

- The reserve market can cover more of the operator actions taken prior to load shed.
 - Include 30 minute demand response capacity
 - Include recallable exports
 - Include max gen capacity as reserves

Comparison to PJM's 30 Min Reserves Options

- PJM proposes to include three elements in 30 min reserves to be carried in addition to primary reserves.
 - Largest contingency
 - Ramping forecast (online only)
 - Net load forecast uncertainty (online only)
- IMM proposes to include two elements in 30 min reserves.
 - Generator performance uncertainty
 - Net load forecast uncertainty
- IMM proposes all 30 min reserves to be both online or offline, like the status quo.

Uncertainty Reserve Requirements*

- Reserve requirements should be informed by
 - Historic market data
 - Current market conditions

- Varying by time of day, time of year, and/or load level
- Balance between precision and simplicity

Transparency in Reserve Requirements*

 The determination of reserve requirements needs transparency to create confidence that market requirements are not arbitrary and subjective.

- Principles
 - Algorithmic: quantitative method
 - Verifiable: can be replicated and checked for accuracy
 - Systematic: a rule driven approach
- If I had the same inputs, I would get the same answer.

10 Minute Uncertainty Reserves

- Use primary reserves for 10 minute uncertainty
 - Synchronized reserves are online.
 - Nonsynchronized reserves are offline.
- Primary reserve requirement
 - Uncertainty due to net load forecast error
 - Largest supply contingency (MSSC)
 - No ramp product component
- Primary reserve requirement

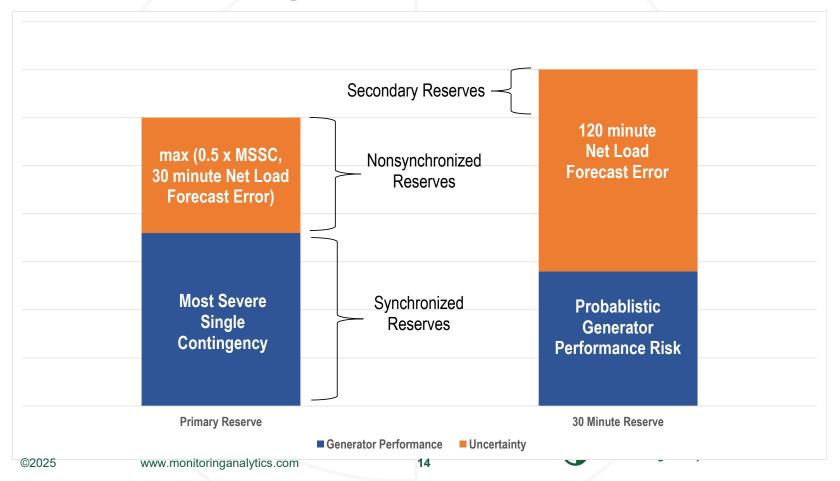
```
Max (1.5 x MSSC, MSSC + uncertainty)
status quo proposed extension
```

10 minute Ramp / Uncertainty Reserves*

- NERC requires contingency reserves to cover the largest contingency.
- PJM carries primary reserves sufficient to cover 150 percent of the largest contingency, which can cover 10 min net load uncertainty.
- There is no need for additional 10 min reserves unless the 10 min uncertainty is more than 50 percent of the largest contingency.
- There is no need for a separate 10 min product. The 10 min uncertainty can be covered by primary reserves.

Comparison to PJM's 10 Min Reserves Options

- PJM proposes to add a new product.
 - Synchronized reserves (online only)
 - Nonsynchronized reserves (online or offline)
 - Ramping and uncertainty reserves (online only)


- IMM proposes to keep the two existing products.
 - Synchronized reserves (online only)
 - Nonsynchronized reserves (online or offline)

10 minute Ramp / Uncertainty Reserves*

 Multi-interval dispatch remains the best solution for enhancing dispatch to address system ramp needs.

- PJM proposes to require the ability to automatically follow dispatch for ramp/uncertainty reserves.
 - The purpose of 10 min reserves is to convert to energy when called.
 - No 10 min reserves need a more restrictive requirement to follow dispatch than that required to provide energy.
 - The restriction would create an unnecessary barrier to entry, limiting competition.

Conceptual Diagram of IMM Reserves Proposal

IMM Options: Day Ahead Only Reserves

 The IMM proposes to maintain the status quo, no day ahead only reserves.

 The current reserve products would remain in the day ahead market to reflect real time reserve needs.

 The IMM does not support PJM's proposal to add a day ahead only reserve product.

Day Ahead Reserves*

- PJM proposes a day ahead only reserve product.
- Including DA only uncertainty in the market does not guarantee effective unit commitment changes.
- Creating a systematic modelling difference between the day ahead and real time markets will undermine market incentives.
- Day ahead only reserves do not ensure that fuel will be available in real time, especially on critical days.
- The only clear result of day ahead only reserves is higher prices.

©2025

Offers for Reserves

- The reserve markets are highly concentrated. The markets are cost based to mitigate market power.
- Cost-based offers would require fuel cost policies.
- The gas availability costs discussed in the RCSTF are not workable as reserve costs.
- Gas pipeline storage services
 - Park and loan services are interruptible, not reliable when they are needed.
 - Pipeline storage is a fixed cost, not applicable to the reserve market.

Nested Reserve Products*

- In the status quo reserve market, the products are nested by zones and by product definition.
- The most restrictive product, synchronized reserve, can satisfy the requirements for all the other products.
- As a result, the prices are additive when multiple reserve products or zones are in shortage.

- The current product nesting is a logical approach.
- Price capping in the PJM tariff prevents excessive pricing levels under shortage pricing.

Unnesting ORDC Penalty Factors*

- PJM proposes to unnest the primary and secondary reserve products, such that the ORDC penalty factors are not additive.
- If the prices are not additive, the penalty factors must be set to create the hierarchy of the products in the market clearing.
- This means that the penalty factors for the higher quality products must be at higher levels than the lower quality products.
- Depending on the ORDC definitions, this could result in more frequent pricing at higher penalty factors.

ORDC Shape*

- A sloped ORDC has the penalty factor setting price any time the quantity of reserves is in the sloped range.
- A vertical ORDC maintains reserves at a given level and has prices determined by the supply curve, instead of an administrative price.

- ORDC pricing is needed in a shortage and not needed when there is no shortage.
- A sloped ORDC when there is a shortage makes sense.

ORDC Shape*

- When reserves exceed the minimum reserve requirement (MRR), administrative pricing is not necessary. A sloped ORDC beyond the minimum requirement imposes shortage pricing when the market is not short.
- PJM's proposed new 10 min reserve product effectively extends the primary reserve ORDC beyond the MRR.
 - Since May 2023, PJM has already inappropriately added additional reserves by increasing the MRR by 30 percent.

ORDC Penalty Factors*

- Reserves are cleared in the RT SCED, five minute market solution.
- RT SCED is based on marginal costs, not commitment costs.
- The quantity of reserves cleared depends on the reserve penalty factor (ORDC height) vs the marginal cost of changing the economic dispatch for energy to create sufficient reserves.
- The \$850 per MWh penalty factor has not been too low, even when some generators' marginal costs have risen above \$1,000 per MWh.

©2025

Additional Topics to be Added to IMM Proposal

- Calculation of uncertainty reserve requirements
- Emergency generation and demand response deployment for energy and reserves
- Reserve deliverability
- Shortage pricing: Operating Reserve Demand Curves (ORDCs) and penalty factors
- Performance expectations
- Consequences for nonperformance
- Dispatch of energy and reserves, resource capabilities and modelling

©2025

Monitoring Analytics, LLC
2621 Van Buren Avenue
Suite 160
Eagleville, PA
19403
(610) 271-8050

MA@monitoringanalytics.com www.MonitoringAnalytics.com