Schedule Selection IMM Package

MIC August 9, 2023 IMM

Issue

- Implementation of combined cycle modeling requires that PJM shorten the computational time of the market clearing engine (MCE) by selecting offer schedules using a rule based approach rather than optimization.
- There are problems with the current offer schedule selection process that undermine market power mitigation.
- Solving the market power mitigation issues will also shorten MCE computational time.

2

Current Offer Capping

- The current offer capping process allows sellers with market power to:
 - Set LMPs with high markups;
 - Withhold using high offers and inflexible parameters;
 - Extract unnecessary uplift from the market.
- The IMM has several longstanding recommendations to fix the offer capping process.

Proposals

- The MIC special sessions have resulted in three proposals for changing the way offer schedules are used in the market unit commitment process.
- All three proposals meet PJM's desired goal of reducing the computational time of the day ahead market.
- The IMM proposal resolves the market power mitigation issues.
- The GT Power Group proposal also resolves these issues, but creates new issues by not selecting the most economic schedule.

Proposals

- The PJM package would create unacceptable flaws in how units are committed.
- The GT Power Group package has the same issues, but to a lesser extent.
 - Issues result from revisions to this package by PJM.

Problems with PJM's Proposal

Feature of PJM Proposal

- Cost evaluated only at economic minimum output level.
- Minimum run time is the only parameter that enters the dispatch cost formula.
- Total dispatch cost sums the highest cost

 hours for the number of hours in the min run
 time.
- Offer schedule selection is based on a
 (perhaps nonsequential) subset of hours.

Implication

- No points on the offer curve are evaluated for markup above eco min.
- No parameters on the offer schedule are evaluated for inflexibility other than min run time.
- No hourly offers are evaluated if they have an hourly dispatch cost less than the highest ranked hours.
- The actual commitment of the unit could be in different hours from the hours evaluated.

©2023

Comparison of Proposals by Scenario

Scenarios	PJM	GT Power Group	IMM
Price based unit fails the TPS test, one cost offer	Apply total dispath cost formula to two offer		Choose lowest offer points and most flexible
available	schedules	Cost offer commitment	parameters between price and cost offers
			Choose lowest offer points and most flexible
Price based unit fails the TPS test, dual fuel cost	Apply total dispath cost formula to three offer	Apply total dispatch cost formual to choose	parameters between price and reference cost
offers available	schedules	between gas and oil cost offers	offer based on most economic fuel for each hour.
			Market seller chooses one offer
	Apply total dispath cost formula to all available		Or
Cost based unit	cost schedules	Apply total dispath cost formula	Market clearing engine chooses.
			Choose price offer points.
	Apply total dispath cost formula to price and		Choose most flexible parameters between price
Price based unit on emergency or alert day	price PLS schedules	Price PLS commitment	and cost offers.
Price based unit on emergency or alert day fails	Apply total dispath cost formula to all three offer		Choose lowest offer points and most flexible
the TPS test, one cost offer available	schedules	Cost offer commitment	parameters between price and cost offers
			Choose price offer points.
Price based unit on emergency or alert day, dual	Apply total dispath cost formula to price and		Choose most flexible parameters between price
fuel cost offers available	price PLS schedules	Price PLS commitment	and reference cost offer.
			Choose lowest offer points and most flexible
Price based unit on emergency or alert day fails	Apply total dispath cost formula to all four offer	Apply total dispatch cost formual to choose	parameters between price and reference cost
the TPS test, dual fuel cost offers available	schedules	between gas and oil cost offers	offer

Dual Fuel Unit Commitment

- The flaws with PJM's proposal can be illustrated with an example of a dual fuel unit on a day with a large change in gas prices.
- The IMM constructed an example based on representative costs for actual units and actual fuel prices from February 3, 2023.
- The example offer schedules were input in the calculation spreadsheet provided by PJM to demonstrate its proposal.

Example Daily Parameters for Dual Fuel Unit

Table 1 - Daily Resource Parameters and Cost						
Table 1 - Dally Resource P	arameters a	na cost				
	Maximum			Cold		
Resource offers or	Run Time	Minimum Run		Jp cost		ly No Load
Schedules	(hrs)	Time (hrs)	(\$)	Co	st (\$/hr)
Price Schedule	24	12	\$ 10,	000.00	\$	8,000.00
Price PLS Schedule	24	6	\$ 10,	000.00	\$	8,000.00
Cost Schedule 1 (Gas)	24	6	\$ 10,	000.00	\$	9,000.00
Cost Schedule 2 (Oil)	24	6	\$50,	000.00	\$	45,000.00

9

Example Hourly Price Offer Based on Gas

Table 2 - Incremental Ene				
	HE1-HE10	,HE23-HE24	HE11	-HE22
	MW	Price (\$/MWh)	MW	Price (\$/MWh)
	200	15	200	120
Price Schedule (gas)	300	20	300	160
	500	25	500	200
	501	500	501	500

10

Example Hourly Cost Offers

	HE1-I	HE10,HE23-HE24	HE11	-HE22
Cost	MW	Price (\$/MWh)	MW	Price (\$/MWh)
Cost Schedule 1 (gas)	200	20	200	160
	300	25	300	200
	500	30	500	240
	501	35	501	280

	HE1-HE10,HE23-HE24		HE11-HE22		
Cost	MW	Price (\$/MWh)	MW	Price (\$/MWh)	
Cost Schedule 2 (oil)	200	100	200	100	
	300	125	300	125	
	500	150	500	150	
	501	175	501	175	

Gas is the economic fuel for commitment for gas day 1, but oil for gas day 2.

11

Application of PJM Dispatch Cost Formula

Table 4 - Total Dispatch Cost

	Dispatch Cos (largest equivalent	tion 4(A):Total st over Min Run values for hours of min using EcoMin
Price Schedule	\$	1,136,000.00
Price PLS Schedule	\$	608,000.00
Cost Schedule 1 (gas)	\$	704,000.00
Cost Schedule 2 (oil)	\$	440,000.00

www.monitoringanalytics.com

The oil cost schedule is selected regardless of the time of day.

Unacceptable Outcome

- The PJM proposed dispatch cost formula simplifies too much. It ignores hourly offers for many hours of the day, which is a particular issue for gas and dual fuel resources.
- It is unacceptable for the market to commit a resource on its oil cost offer when its gas cost offer is available and more economic.
- If the example unit failed the TPS test and was needed during gas day 1, when gas is lower cost, PJM's proposal would commit it on the oil offer anyway.

IMM Approach – Option 1

- No market selection of the entire schedule.
- The lowest financial parameters are chosen for start up, no load, and the offer curve.
- The most flexible operating parameters are chosen.
- Market seller designates a single cost-based offer for comparison with price-based offer to ensure consistent offers and parameters.
- The cost-based offer must use the most economic fuel type for each hour.
- The market seller is responsible for correctly selecting among multiple cost offers.

Example IMM Approach

Financial Parameters	Price Of	fer	Cost Offer	Mitigated Offer
Start Cost	3,5	00	4,000	3,500
No Load Cost	1,0	00	1,000	1,000
Incremental Offer Curve	\$/M	Wh	\$/MWh	\$/MWh
0 MW		15	20	15
50 MW		15	25	15
100 MW		15	30	15
150 MW	5	00	35	35
200 MW	5	00	40	40
©2023 www.monite	oringanalytics.com	15	Monitoring And	alytics

Example IMM Approach

Operating Parameters	Price Parameters	Parameter Limits	Mitigated Parameters
Min Down Time	8.0	7.0	7.0
Min Run Time	24.0	2.0	2.0
Max Run Time	4.0	24.0	24.0
Notification Time	4.0	1.0	1.0
Start Time	3.0	3.0	3.0
Turn Down Ratio	2.0	1.5	2.0
Max Daily Starts	3.0	3.0	3.0
Max Weekly Starts	21.0	21.0	21.0

IMM Approach – Option 2

- The market clearing engine (MCE) currently selects among multiple cost-based schedules.
 - This functionality is valuable, especially for dual fuel resources.
- IMM Option 2 preserves MCE schedule selection along with the option to designate a single cost-based offer for offer capping the price-based offer, as in IMM Option 1.
- To ensure market power mitigation is effective, the MCE schedule selection chooses among only cost-based offers.

Monitoring Analytics, LLC 2621 Van Buren Avenue Suite 160 Eagleville, PA 19403 (610) 271-8050

MA@monitoringanalytics.com www.MonitoringAnalytics.com

18

