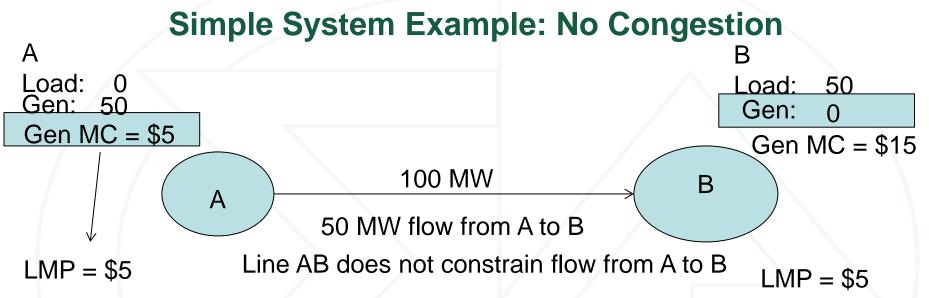
Basic Congestion Concepts

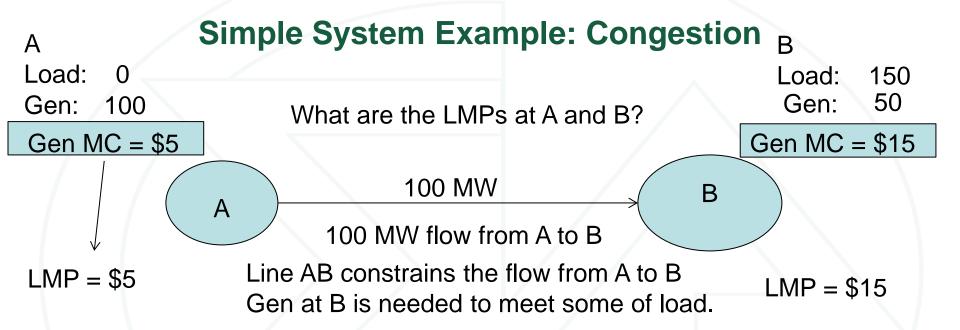
2019


Howard Haas

Congestion

- Congestion = The difference between total charges to load and total payments to generation caused by binding transmission constraints.
 - Binding transmission constraints cause price differences on the system
 - With binding constraints, load pays more for energy than generation gets paid for energy
 - Generation upstream of generation is paid lower prices than generation downstream of congestion
 - Load downstream of congestion pays the higher (upstream price) for all of its energy
 - The difference in payments from load to generators is congestion

What are the LMPs at A and B?


©2019

	А	Constraint	В			
LMP	\$5	>	\$5			
	Zone A		Zone B			
Load MW	0		50			
Marginal Price of Power	\$5.00		\$5.00			
(LMP × MW)	Zone A		Zone B	Total		
Load Charges	\$0.00		\$250.00	\$250.00		
Generation Credits	\$250.00		\$0.00	\$250.00		
Total Credits/Charges	(\$250.00)		\$250.00	\$0		
Congestion= Load Charges – Gen Credits						

Congestion = The difference between total charges to load and total payments to generation caused by binding transmission constraints.

Monitoring Analytics

	А	Constraint	В				
LMP	\$5	>	\$15				
	Zone A		Zone B				
Load MW	0		150				
Marginal Price of Power	\$5.00		\$15.00				
(LMP x MW)	Zone A		Zone B	Total			
Load Charges	\$0.00		\$2,250.00	\$2,250.00			
Generation Credits	\$500.00		\$750.00	\$1,250.00			
Total Credits/Charges	(\$500.00)		\$1,500.00	\$1,000			
Congestion = Load Charges – Gen Credits							

Congestion = The difference between total charges to load and total payments to generation caused by binding transmission constraints. Monitoring Analytics

Path Based FTR vs. Direct Allocation of Congestion FTR

2019

Howard Haas

Congestion Allocation: FTR or Direct

- Congestion = The difference between total charges to load and total payments to generation caused by binding transmission constraints.
- Congestion belongs to load
- If congestion is returned to load, load gets credit for the access to upstream generation made available by transmission.
- If congestion is returned to the load that paid it, the average cost of power realized by the load will equal the actual average cost of energy that served that load.
- Load has the rights to congestion but can sell that right
 - In the current system load can claim or passively sell path based, modeled path based rights to congestion
 - Under proposed construct, load can keep or sell actual congestion (network based)

FTR vs Direction Allocation

Max FTR MW = System Limit = 100 MW

- PJM can make 100 MW available on line AB as an FTR
- Load can self schedule and claim the FTR or passively sell and get the auction revenue from the sale (ARR)
 - Maximum potential value of FTR from A to B = (FTR MW) x (Price difference between B and A)

FTR Target Allocation = (LMP Sink – LMP Source) x FTR MW

If FTR MW = 100 MW, then FTR Target Allocation = \$1,000Congestion assigned to FTR = \$1,000

If Congestion is assigned to load directly, Congestion assigned = \$1,000

FTR vs. Direction Allocation

- Load has the rights to congestion but can sell that right
 - In the current system load can claim or passively sell path based, modeled path based rights to congestion
 - In this example FTR claims \$1,000 in congestion 0
 - In a simple one line system, perfect alignment in model and actual system 0 capability (and single settlement market) results in FTR being the right to actual congestion
 - Simple one line system eliminates cross subsidy and leakage issue than 0 cause a misalignment of target allocations and actual congestion
 - Under proposed construct, load can keep or sell actual congestion (network based)
 - In this example, the FTR, defined as the direct allocation of actual congestion, 0 claims \$1,000 in congestion
 - Direct allocation FTR always results in the allocation of actual congestion 0 based on actual network. **Monitoring Analytics**

Allocation of congestion: Affect on Average Cost of Load

9

	А	Constraint	В	
LMP	\$5	>	\$15	
SMP	\$5		\$5	
CLMP	\$0		\$10	
	Reference Bus	100		
Load MW	0		150	
Gen MW	100		50	
CLMP x MW	Zone Based A		Zone Based B	Total Congestion
Load Charges	\$0		\$1,500	\$1,500
Gen Credits	\$0		\$500	\$500
Total Charges	\$0		\$1,000	\$1,000
	Zone A		Zone B	
Load MW	0		150	
Marginal Price of Power	\$5.00		\$15.00	-
Total Load Charges	\$0.00		\$2,250.00	
Average Cost of Power	\$5.00		\$15.00	
Congestion Allocation	\$0.00		\$1,000.00	🔨 🗡 Margin
Net Load Charges	\$0.00		\$1,250.00	
Marginal Price of Power	\$5.00		\$15.00	K
Average Cost of Power	NA		\$8.33	

> Marginal Price does not change

With correct congestion allocation, average cost of power reflects actual average cost for serving zone Analytics

Monitoring Analytics, LLC 2621 Van Buren Avenue Suite 160 Eagleville, PA 19403 (610) 271-8050 MA@monitoringanalytics.com www.MonitoringAnalytics.com

