MA Scarcity Pricing Proposal: Price Targets and Related Issues

SPWG

Howard J. Haas

February 8, 2009

Scarcity Pricing: MA position

- Scarcity pricing is an important part of market design
- Scarcity pricing does not mean prices over \$1,000

Monitoring Analytics

The Purpose of the Scarcity Pricing Signal

- Purpose is to signal scarcity
- Purpose is to incent participation
- Setting the resulting energy price too high will result in a wealth transfer, rather than meaningful increase in participation
- Determines the opportunity cost for reserves during scarcity

MA vs. PJM Basic Mechanics Comparison

Operational	MA	PJM
ORDC	Yes	Yes
Penalty factors drive dispatch in and out of shortage	Yes	Yes
Co-optimization of energy and reserves	Yes	Yes
Opportunity Cost based on LMP	Yes	Yes
Increases and maintains LMP during scarcity	Yes	Yes
Maintain's co-optimization during scarcity	Yes	Yes
Prices signals/compensation consistent with dispatch solution	Yes	Yes

The PJM and MA Proposals: Conceptually and Operationally Identical

- Concept: Add reserve constraints to the optimization model
- LMP is the incremental cost to serve incremental load at a location while controlling for *all* related constraints
- Reserves are additional constraints to the optimization.
- LMP = Energy + Marginal Losses + Congestion + "Scarcity Adder"
- "Scarcity Adder" is an administrative contribution to marginal bus LMP(s) when short reserves

Example: Synchronized Reserve Target

- If system runs short of synchronized reserves:
 - LMP at the marginal unit buses set equal to \$1,000.
 - Resulting opportunity costs determined relative to LMP
 - Reserve constraint(s) relaxed, penalty factor of \$1,000 is maintained
 - Dispatch optimization continues
 - Max opportunity cost for reserves = \$1,000
 - Hour ahead market for reserves incorporates opportunity cost in clearing price

Two approaches, same mechanism

- Use of Operating Reserve Penalty Factor Curve to drive within hour dispatch and optimization
 - PJM
 - Two cumulative fixed \$850 penalty factors that drive dispatch (within each reserve region)
 - Penalty factor(s) applied to marginal bus LMP (max price \$2,700) during reserve scarcity
 - MA
 - \$1,000 penalty factor(s) that drive dispatch
 - Defined LMP targets (max price \$1,000) on marginal buses during reserve scarcity
 - · Reserve constraint is relaxed to maintain dispatch signal
 - Adder to marginal bus endogenously determined
 - Maintains indifference between LMP and opportunity cost for reserves
 Monitoring

"MA Approach" vs. "PJM Approach"

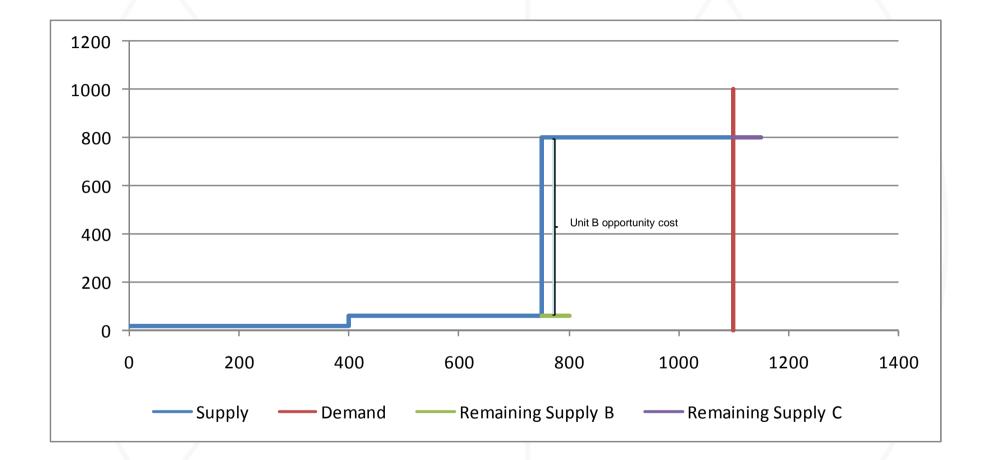
	MC	Max Energy	Max Reserve
Gen A	20	400	50
Gen B	60	400	50
Gen C	800	400	50

Reserve Requirement = 100 MW

MA: LMP goes to \$1000 when scarce, Max Price for Reserves = \$1000 PJM: Penalty Factor = \$850

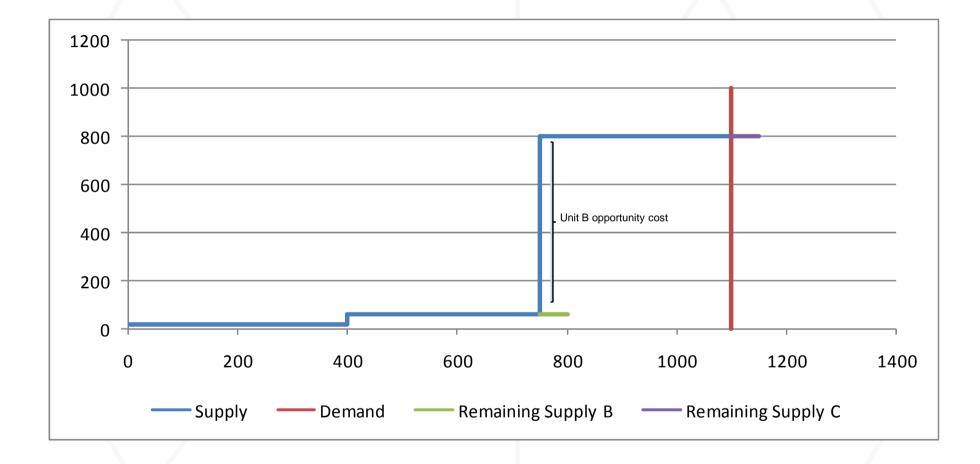
MA Approach

	Market Pric	es			Dispatch	1				
Total		Energy								
Load/	System	Price	"Scarcity		Energy	Reserves	Energy	Reserves	Energy	Reserves
Energy	Reserve	(LMP)	Adder"	MU	А	А	В	В	С	С
350	100	\$60		В	400	0	350	50	0	50
800	100	\$800		С	400	0	350	50	50	50
1100	100	\$800		С	400	0	350	50	350	50
1110	90	\$1,000	\$940	В	400	0	360	40	350	50
1170	30	\$1,000	\$200	С	400	0	400	0	370	30

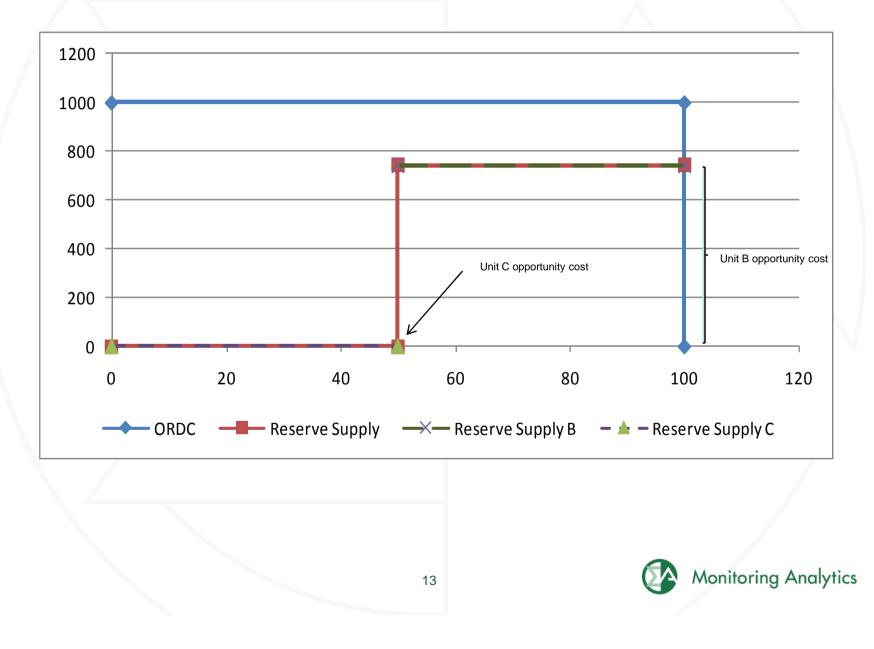


PJM Approach

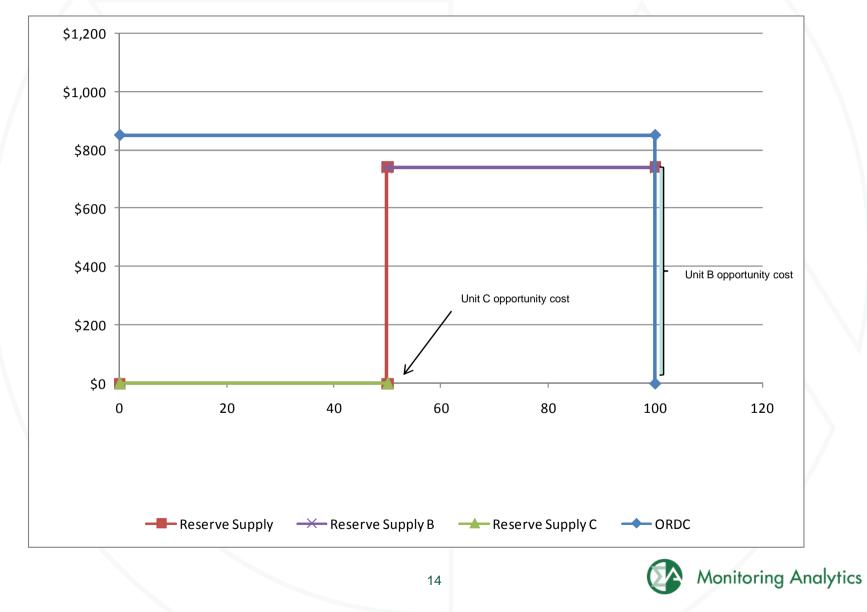
	Market Pric	es			Dispatch	1				
Total		Energy								
Load/	System	Price	"Scarcity		Energy	Reserves	Energy	Reserves	Energy	Reserves
Energy	Reserve	(LMP)	Adder"	MU	А	А	В	В	С	С
350	100	\$60		В	400	0	350	50	0	50
800	100	\$800		С	400	0	350	50	50	50
1100	100	\$800		С	400	0	350	50	350	50
1110	90	\$910	\$850	В	400	0	360	40	350	50
1170	30	\$1,650	\$850	С	400	0	400	0	370	30

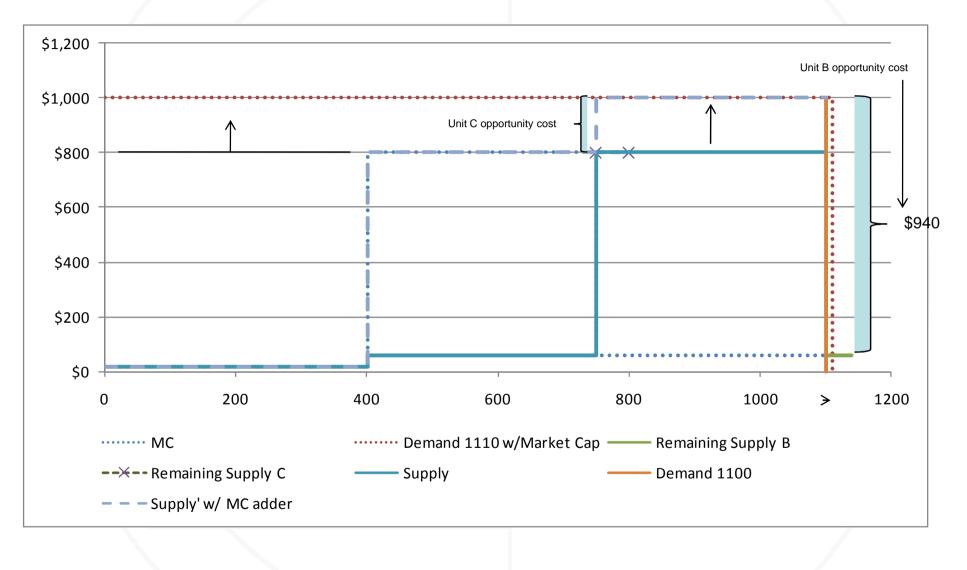


MA Approach: LMP

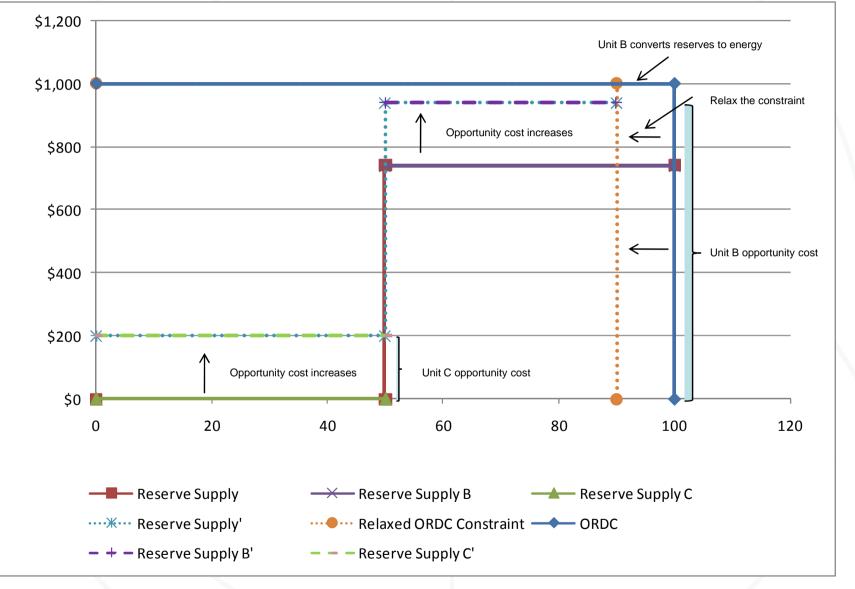


PJM Approach: LMP

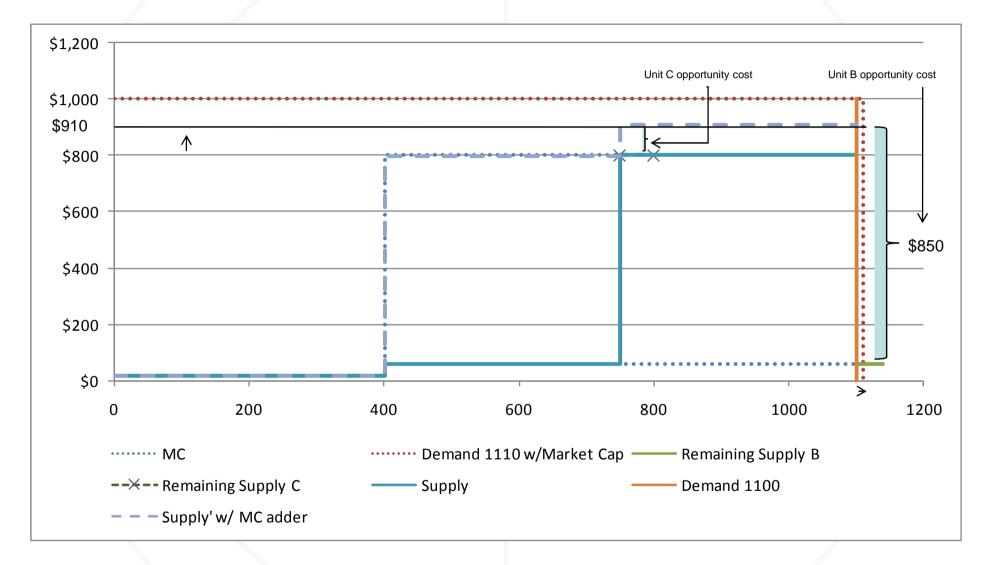



MA Approach: Opportunity Cost for Reserves/Penalty Factor

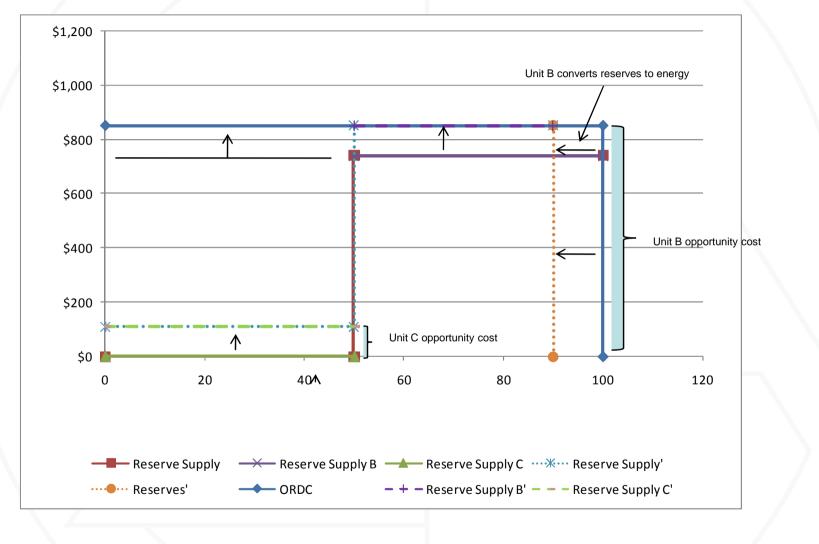
PJM Approach: Opportunity Cost for Reserves/Penalty Factor



MA Approach: LMP under Scarcity



MA Approach: Opportunity Cost/Scarcity



PJM Approach: LMP under Scarcity

PJM Approach: Opportunity Cost/Scarcity

MA vs. PJM Approach: Functionally the Same

- Using the same reserve targets, the unit specific operational dispatch signals are identical
 - Using different targets will cause different potential outcomes
- Both mechanisms would move PJM from manual within hour dispatch for reserves to automated within hour dispatch for reserves
- Both represent a change from current operations
- Both would result in a change in what is considered to be "optimal" dispatch

MA approach is operationally feasible

- PJM proposes to use constraint relaxation to avoid "false positives"
 - allows continued co-optimization under conditions of reserve shortage without having penalty factors affect LMP
 - Internally consistent dispatch result before/after
- PJM has shown that relaxing the constraint is operationally feasible
 - Basis of MA approach, as shown in the example

MA approach is operationally feasible

- MA's proposal would use constraint relaxation to allow continued co-optimization of energy and reserves during reserve shortage
 - Like PJM proposal, allows continued cooptimization under conditions of reserve shortage without having penalty factors affect LMP
 - Approach is internally consistent before and during reserve shortage
 - Does not require "suspension" of co-optimization when providing a scarcity price
 - Constraint relaxation is the basis of the MA approach

MA approach is operationally feasible

- MA's proposed use of constraint relaxation to allow continued co-optimization of energy and reserves during reserve shortage allows
 - Scarcity pricing (\$1,000) that is consistent with PJM current market design (DA vs. RT) and with the ORDC approach
 - Allows for the gradual adoption of higher price caps *if* need is identified

MA vs. PJM approach: \$1,000 vs. \$2,700

Market Design Issues (\$1,000 vs. \$2,700)	MA	PJM
Market Results compatible with PJM's current market rules/caps	Yes	Not in scarcity
Compatible with RT/DA market design (arbitrage, scheduling)	Yes	No
Would require changes to DA market/Design/Rules	No	Yes
Market Power concerns w/ DA Market Fixes	No	Yes
Internally consistent rules during a transition	Yes	No

Pricing Under Scarcity: \$1,000 vs. \$2,700

 No evidence that the scarcity signal in the energy market must exceed \$1,000 in order to maintain reliability

Pricing Under Scarcity: \$1,000 vs. \$2,700

- Capping the market price at \$1,000
 - Makes it possible to arbitrage between DA and RT
 - Not possible to arbitrage between DA and RT at \$2,700 without substantially changing the DA market and introducing market power issues
 - Allows participants to better manage risks in DA market
 - Missed load prediction
 - Tripped unit
 - Is consistent with PJM's current market design \$2,700 in RT is not consistent with PJM's current market design and offer caps
 - Does not require reworking of the DA market

Pricing Under Scarcity: \$1,000 vs. \$2,700

- Capping the market price at \$1,000
 - Would set LMP consistently with current resource offer caps and current market design
 - Would ensure full resource stack is dispatched

Differences between MA and PJM pricing approaches

- Scarcity price level
 - · Price target vs. Fixed adder
 - Not a relevant difference to the core ORDC concept
 - Policy issue
 - Market structure compatibility issue
- One or two reserve targets
 - MA proposes one (Sync)
 - ORDC (either MA or PJM) approach can handle one or two (or more)
- Structure of Tier 2 market
 - Hour ahead structure and 5 minute optimization vs. 5 minute only optimization
 - Limiting assignment/compensation to 5 minute optimization/hourly integrated pricing may reduce reserves/participation

Challenge under either approach: False Positives

- Morning pickup/min gen events
 - Relaxing the constraint will work
 - Issues:
 - Need rules around when to trigger price effects under either approach
 - Frequency of events

