MA Scarcity Pricing Proposal: 3rd Review

SPWG

December 4, 2009

Howard J. Haas

Shared Overall Goals

- Incorporate operational requirements and practice in the dispatch models
- Send locational price signals consistent with system conditions
- Send price signals consistent with security constrained dispatch and operational decisions
- Improve system operation during times of system stress

Shared Characteristics

- Use of Operating Reserve Penalty Factor Curve to drive within hour dispatch and optimization
 - PJM proposing cumulative \$850 penalty factors that adjust marginal bus LMP (max price \$2,700) during reserve scarcity
 - MA proposes \$1,000 penalty factors that drive dispatch, with defined LMP targets (max price \$1,000) on marginal buses during reserve scarcity
- Emergency procedures (Voltage Reduction and Manual Load Dump) should not suppress price

- Operating Reserve Penalty Factor Curves
 - 10 minutes reserve target(s)—Synchronized Reserve (S.R.) and/or Primary
 - Scarcity price targets (\$1,000 vs. \$2,700)
 - Location specific opportunity costs
 - Handling morning pickup/min gen events (duration element)

- Reserve measurement/Data Requirements
 - As part of final scarcity design need defined methodology for determining
 - Tier 1 S.R. available
 - hour ahead
 - 5 minute basis
 - 。 Tier 2 S.R. available
 - hour ahead
 - 5 minute basis
 - Non Synchronized Reserve (part of Primary) available
 - hour ahead
 - 5 minute basis
 - Need resulting data prior to final design

The RPM Revenue Offset

- Marginal unit designation
- Scarcity Component

- Structure of the Tier 2 Synchronized Reserve (S.R.) Market: Hour ahead scheduling vs. "full 5 minute optimization"
 - Cycling of assignment
 - Location specific opportunity costs
 - Participation of DR
 - Effects on generation participation and incentives
- The treatment of emergency measures vs. emergency resources
 - Emergency DR
 - Capacity Recalls

Capacity recalls

- As part of final scarcity design need written procedures on when and how to recall
- As part of final scarcity design need documented methodology to determine the amount of recallable capacity
- As part of final scarcity design need data based on methodology

- Definition of reserve regions
 - Match current?
 - Dominion vs. Mid Atlantic S.R.

Concerns with PJM's Approach

- Price Levels
 - Proposed price levels not necessary to attract resources or reliably operate the system
 - Scarcity price targets (up to \$2700) inconsistent with DA vs. RT hedging and arbitrage
- System control
 - Largely eliminates hour ahead scheduling of Tier 2
 - Cycling within hour assignments
 - As proposed will reduce reserves and sources of reserves
 - Non-locational dispatch and price setting with emergency DR

Concerns with PJM's Approach

- Frequency of scarcity pricing events
 - Scarcity triggered during morning pick up?*
 - False positives and resulting dispatch instructions*
 - Treatment of emergency resources vs. actions

*This is an issue that needs to be addressed under both proposals

Proposed Scarcity Pricing Approach

- Concept: Add in reserve constraints to the optimization model
- LMP is the incremental cost to serve incremental load at a location while controlling for *all* related constraints
 - Reserves are additional constraints to the optimization.
- LMP = Energy + Marginal Losses + Congestion + "Scarcity Adder"
- "Scarcity Adder" is an administrative contribution to marginal bus LMP(s) when short one or more reserve products

Defining the Reserve Requirement "LMP Target"

- The LMP "target" during scarcity:
 - Purpose is to signal scarcity and attract resources
 - Purpose is to attract resources not committed via the capacity market
 - Setting the resulting energy price too high may result in a wealth transfer, rather than meaningful increase in resources availability
 - Determines the opportunity cost for reserves during scarcity

Option 1: Primary Reserve Target

- Primary Reserve Requirement is 150% of largest contingency:
 - Primary Reserves (150% of largest contingency in PJM)
 - Sync, Non-Sync, DR (as Tier 2) can contribute
 - Sync Reserve Requirement (100% of first contingency)
 - Sync (including DR as Tier 2) can contribute
 - Max DR Contribution to Sync = 25%

Option 1: Primary Reserve Target

- Theoretically, primary reserves (150% Requirement) can be met via sync reserves (including DR)
- Where Primary = Sync + DR + Non Sync
 - A minimum amount of Sync (Tier 1 and Tier 2) required (100% of largest contingency)
 - Current restriction on max DR contribution towards Sync target (100% Requirement) is 25% (can only be Tier 2)
 - Remainder of Primary Reserve target met via <u>Non-</u> sync quick start and excess Tier 1

Option 1: "LMP Target"

- One Target (component targets): primary reserves
- "LMP Target" if system runs short of reserves:
 - LMP at the marginal unit buses gets set equal to \$1,000.
 - Resulting opportunity costs determined relative to LMP
 - Max opportunity price for reserves = \$1,000

Option 2: Primary Reserve and Sync Reserve

• Two targets:

- Primary Reserve Requirement is 150% of largest contingency:
 - Primary Reserves (150% of largest contingency in PJM)
 - Sync, Non-Sync, DR (as Tier 2) can contribute
- Sync Reserve Requirement (100% of largest contingency)
 - Sync (including DR as Tier 2) can contribute
 - Max DR Contribution to Sync = 25%

Option 2: "LMP Target(s)"

- Two targets: Primary and Sync
 - Primary
 - "LMP Target": LMP target, higher of Marginal Unit or \$700 at marginal buses
 - Resulting opportunity costs determined relative to LMP
 - Max opportunity price for Primary Reserves = \$700
 - Sync
 - "LMP Target": LMP at the marginal unit buses gets set equal to \$1,000.
 - Resulting opportunity costs determined relative to LMP
 - Max Opportunity price for Sync Reserves = \$1,000

"LMP Target" vs. "Penalty Factor"

Gen	MC	Max Gen	Max Reserves
А	\$20	400	50
В	\$60	400	50
С	Q+\$100	400	50

Reserve Requirement = 100 MW

MA: LMP goes to \$1000 when scarce, Max Price for Reserves = \$1000 PJM: Penalty Factor = \$850

Monitoring Analytics

MA: "LMP Target"

	"Market Prices	" (Noi	n RPM re	esouces price	e)		Dispatch									
Total	System	Ener	gy Price	Reserve	"Scarcity		"Scarcity		Energy	Reserves	Energy	Reserves	Energy	Reserves		
Load/Energy	Reserve		(LMP)	Price	Adder"	MU	Adder"	MU	А	A	В	В	С	С		
400	100		\$ 20	\$-		A		А	400	0	0	50	0	50		
500	100		\$ 60	\$-		В		В	400	0	100	50	0	50		
700	100		\$ 60	\$-		В		В	400	0	300	50	0	50		
750	100		\$ 60	\$-		В		В	400	0	350	50	0	50		
800	100		\$ 150	\$90		C		C	400	0	350	50	50	50		
850	100		\$ 200	\$ 140		C		C	400	0	350	50	100	50		
900	100		\$ 250	\$ 190		C		C	400	0	350	50	150	50		
950	100		\$ 300	\$ 240		C		C	400	0	350	50	200	50		
1000	100		\$ 350	\$ 290		С		C	400	0	350	50	250	50		
1050	100		\$ 400	\$ 340		C		C	400	0	350	50	300	50		
1100	100		\$ 450	\$ 390		C		C	400	0	350	50	350	50		
1110	90		\$ 1,000	\$ 940	\$ 940	В	\$ 550	C	400	0	360	40	350	50		
1140	60		\$ 1,000	\$ 940	\$ 940	В	\$ 550	С	400	0	390	10	350	50		
1170	30		\$ 1,000	\$ 530	\$ 530	С	\$ 530	С	400	0	400	0	370	30		

PJM: "Penalty Factor"

	"Market Pric	ces"	(Non RPM	res	souces p	rice	2)				Dispatch								
	System	I	Energy Pric	e l	Reserve		"Scarcity		"Scarcity		Energy	Reserves	Energy	Reserves	Energy	Reserves			
Energy	Reserve	(LMP)	I	Price		Adder"	MU	Adder"	MU	A	А	В	В	C	С			
400		100	\$ 2	0	\$			А		А	400	0	C) 50	C) 50			
500		100	\$6	0	\$	•		В		В	400	0	100) 50	C) 50			
700		100	\$6	0	\$	•		В		В	400	0	300) 50	C) 50			
750		100	\$6	0	\$	•		В		В	400	0	350) 50	C) 50			
800		100	\$ 15	0	\$	90		С		С	400	0	350	50	50) 50			
850		100	\$ 20	0	\$	40		С		С	400	0	350	50	100) 50			
900		100	\$ 25	0	\$.90		С		С	400	0	350	50	150) 50			
950		100	\$ 30	0	\$ 2	240		С		С	400	0	350	50	200) 50			
1000		100	\$ 35	0	\$ 2	290		С		С	400	0	350	50	250) 50			
1050		100	\$ 40	0	\$ 3	840		С		С	400	0	350	50	300) 50			
1100		100	\$ 45	0	\$ 3	890		С		С	400	0	350	50	350) 50			
1110)	90	\$ 91	0	\$ 8	350	\$850	В	\$460	С	400	0	360	40	350) 50			
1140		60	\$ <u>91</u>	0	\$ 8	350	\$850	В	\$460	С	400	0	390	10	350) 50			
1170		30	\$ 1,32	0	\$ 8	350	\$850	С	\$850	С	400	0	400) 0	370) 30			

LMP Target vs. Penalty Factor

- Using the same reserve targets, the unit specific operational dispatch signals are identical
 - Using different targets will cause different potential outcomes
- Regardless of targets, both mechanisms would move PJM from manual within hour dispatch for reserves to automated within dispatch for reserves
- Both represent a change from current operations and to what will be considered to be "optimal" dispatch

MA: "LMP Target"

No	n-RPM	Res	ource						
		RPMC							
RPI	ИС	Eff	ective						
Eff	ective	Res	serve						
LΜ	Р	Pri	ce						
\$	20	\$	-						
\$	60	\$	-						
\$	60	\$	-						
\$	60	\$	-						
\$	150	\$	90						
\$	200	\$	140						
\$	250	\$	190						
\$	300	\$	240						
\$	350	\$	290						
\$	400	\$	340						
\$	450	\$	350						
\$	1,000	\$	940						
\$	1,000	\$	940						
\$	1,000	\$	530						

PJM: "Penalty Factor"

	No	n-RPM	Res	ource								
			RPI	MC								
	RPI	ИС	Effective									
	Effe	ective	Res	serve								
	LΜ	Р	Pric	ce								
	\$	20	\$	-								
	\$	60	\$	-								
	\$	60	\$	-								
/	\$	60	\$	-								
	\$	150	\$	90								
	\$	200	\$	140								
	\$	250	\$	190								
	\$	300	\$	240								
	\$	350	\$	290								
	\$	400	\$	340								
	\$	450	\$	350								
	\$	910	\$	850								
	\$	910	\$	850								
	\$	1,320	\$	850								

Pricing Under Scarcity: \$2,700 vs. \$1,000

- No evidence that the scarcity signal in the energy market need exceed \$1,000 in order to maintain reliability
- Resources have responded below \$1,000 in the past
- Last and "only" scarcity event reached \$1,000 due to administrative process, not by the value of the most expensive *marginal* resource

Pricing Under Scarcity: \$2,700 vs. \$1,000

- Capping the market at \$1,000
 - Makes it possible to arbitrage between DA and RT
 - Not possible at \$2,700.
- Capping the market at \$1,000
 - Allows participants to better manage risks in DA market
 - Price risk considerably higher at \$2,700
 - Missed load prediction
 - Tripped unit

Pricing Under Scarcity: \$2,700 vs. \$1,000

- Capping the market at \$1,000
 - Would set LMP consistently with current resource offer caps
 - Would ensure full resource stack is dispatched

- Structure of the Tier 2 Market: Hour ahead scheduling vs. "full 5 minute optimization"
 - Cycling of unit assignments
 - Location specific opportunity costs
 - Participation of DR
 - Effects on generation participation and incentives

Concerns with PJM's Approach

- System control issues with PJM's proposal
 - PJM proposes to largely eliminate hour ahead scheduling of Tier 2 Synchronized Reserve (S.R.)
 - PJM proposal, as presented, will reduce reserves and sources of reserves
 - Cycling within hour assignments
 - Participation of DR
 - Affects on generation participation and incentives
 - May affect frequency of events

Sync Reserve Optimization: PJM Proposal

- PJM proposes to effectively eliminate hour ahead Tier 2 S.R. Market
 - Hour ahead assignment based on unit limitations (need to start, etc) on within hour assignment
- PJM's objective is to maximize the resources being optimized within the 5 minute dispatch
- PJM argues 5 minute optimization will improve overall efficiency and improve transparency of system conditions

Sync Reserve Optimization: PJM proposal

- Efficiency and Reliability improvement via "full" 5 minute optimization depends on a number of unproven assumptions:
 - PJM assumes there are issues w/ current method
 - Resources will be capable of changing status between reserves and energy on a 5 minute basis
 - Resources will be willing to follow dispatch on a 5 minute basis
 - "Cycling" of assignment for a 10 minute product makes sense on a 5 minute basis
 - PJM presumes required "cycling" will not occur
 - There will be the same amount of reserve capacity available under 5 minute optimization as under hour ahead scheduling mechanism

Synchronized Reserve Optimization: MA concerns with PJM proposal

- Concerns about "full" 5 minute optimization (and elimination of hour ahead Tier 2 S.R. market):
 - No reason to believe 5 minute "cycling" of Tier 2 S.R. assignments will not occur (constraints and multiple marginal units)
 - o Could reduce available S.R. reserves "offers"
 - How does DR track S.R. status?
 - Preventing cycling cannot be consistent with 5 minute optimization
 - Restricting cycling will reduce "optimization"
 - Taking assignments as given from interval to interval

Synchronized Reserve Optimization: MA concerns with PJM proposal

- Concerns about "full" 5 minute optimization (and elimination of hour ahead tier 2 market):
 - Fewer reserves could be made available if hour ahead scheduling is lost:
 - **DR may need hour ahead notification to participate**
 - Significant source of Tier 2 S.R. under current structure
 - Generation may have less reserves available on "5 minute" basis
 - 10 minute ramp vs. 5 minute assignment
 - May have more available from predetermined set points (from hour ahead assignment)
 - Incentives under hourly integrated prices
 - Questionable transparency improvement with hourly integrated prices

Cycling within hour assignments

Area	A Generatio	on	
Gen	MC	Max Gen: F	Reserves
В	\$60	850	50
С	Q + \$100	400	50
Area	B Generatio	on	
Gen	MC	Max Gen: F	Reserves
D	\$600	100	50

Reserve Requirement = 100 MW

Monitoring Analytics

Cycling within hour assignment

	1	2	3	4	5	6		7	8	9	10	11	12	1	3	14	15	16	17		18		19	20	21	22	23	24	25	
												Energy	/ area	А								Ene	gy A	rea B			Unit D			
Row	Total Greater System Demand	Greater System Demand (Area A)	Transmission from A to B	Local Demand for area B	Net Demand for area B	Reserves		Area A LMP	Reserve Area Price	MU Area A	MU Area B	B Energy	B Reserves	MC		"Local" Opportunity Cost	C Energy	C Reserves	MC		"Local" Opportunity Cost		Area B LMP	D Energy	D Reserves	MC	"Local" Opportunity Cost	Margin on energy	Margin on Reserves	Row
1	450	400	50	50	0	150	\$	60	0	В	В	450	50	\$ 60)		0	50	\$ -			\$	60	0	50	\$-				1
2	550	500	50	50	0	150	\$	60	0	В	В	550	50	\$ 60	\$	-	0	50	\$ -			\$	60	0	50	\$ -				2
3	750	700	50	50	0	150	\$	60	0	В	В	750	50	\$ 60	\$	-	0	50	Ş -			\$	60	0	50	Ş -				3
4	800	750	50	50	0	150	Ş	60	0	В	В	800	50	\$ 60	Ş	-	0	50	Ş -			Ş	60	0	50	Ş -				4
5	850	800	50	50	0	100	Ş	60	0	В	В	850	0	\$ 60	Ş	-	0	50	Ş -			Ş	60	0	50	Ş -	4			5
6	950	850	50	100	50	100	Ş	150	\$ 90 ¢ 160	C	D	850	0	\$ 60	Ş	90	50	50	\$150.00	Ş	-	Ş	600	50	50	\$ 600 ¢ 600	Ş- د	Ş -		6
/	1020	900	50	120	70	100	Ş	220	\$ 160 ¢ 400	C	D	830	20	\$ 60 ¢ co		160	120	50	\$220.00	\$ ¢	-	Ş	600	70	30	\$ 600 ¢ 600	Ş- د	Ş -		/
8	1080	950	50	130	80	100	Ş ¢	250	\$ 190 ¢ 270	C	D	820	30	\$ 60 ¢ co		190	150	50	\$250.00	Ş	-	Ş	600	80	20	\$ 600 ¢ 600	Ş- د	Ş -		8
9 10	1130	1000	50	140	80	100	ې د	330	\$ 270 \$ 220	C C		820 910	30	\$ 00 \$ 60	i ș	270	230	50	\$330.00 \$200.00	ې د	-	ې د	600	80	20	\$ 600 \$ 600	ې- د	\$ - ¢		9 10
10	1240	1100	50	140	90	100	ې د	390	\$ 330 \$ 200	C C		810 810	40	\$ 00 \$ 60	i ș	330	290	50	\$390.00 \$440.00	ې د	-	ې د	600	90	10	\$ 600 \$ 600	ې- د	\$ - ¢		10
11	1240	11100	50	140	90	100	ې د	440	\$ 300 \$ 300	C C		810 810	40	\$ 60 \$ 60	, s c	300	340 350	50	\$440.00 \$450.00	ې د	-	ې د	600	90	10	\$ 600 \$ 600	ې- د.	- د د ـ		12
12	1230	1110	50	140	90	100	ې د	910	\$ 850	B	D	830	20	\$ 60	, , , ,	850	350	50	\$450.00	¢ ¢	460.00	ې ¢1	450	90	10	\$ 600	\$ \$850	\$ <u>850</u>	\$ 850	12
13	1270	1150	50	140	90	60	ې د	910	\$ 850	B	D	850	0	\$ 60	, , , ,	850	350	50	\$450.00	ې د	460.00	\$1, \$1	450	90	10	\$ 600	\$850	\$ 850	\$ 850	14
15	1320	1180	50	140	90	30	\$1	.330	\$ 850	c	D	850	0	\$ 60	Ś	1.270	380	20	\$480.00	Ś	850.00	\$1.	450	90	10	\$ 600	\$850	\$ 850	\$ 850	15

Cycling within hour assignment

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	,	18	19	20	21	22	23	24	25	
											Energy	' area	А							Energy A	rea B				Unit D		
Row	Total Greater System Demand	Greater System Demand (Area A)	Transmission from A to B	Local Demand for area B	Net Demand for area B	Reserves	Area A LMP	Reserve Area Price	MU Area A	MU Area B	B Energy	B Reserves	MC	"Local" Opportunity Cost	C Energy	C Reserves	MC		"Local" Opportunity Cost	Area B LMP	D Energy	D Reserves	MO	"Local" Opportunity Cost	Margin on energy	Margin on Reserves	Row
1	450	400	50	50	0	150	\$ 60	0	В	В	450	50	\$ 60		0	50	\$-			\$ 60	0	50	\$-				1
2	550	500	50	50	0	150	\$ 60	0	В	В	550	50	\$ 60	\$ -	0	50	\$ -			\$ 60	0	50	\$-				2
3	750	700	50	50	0	150	\$ 60	0	В	В	750	50	\$ 60	\$ -	0	50	\$ -			\$ 60	0	50	\$ -				3
4	800	750	50	50	0	150	\$ 60	0	В	В	800	50	\$ 60	\$ -	0	50	\$ -			\$ 60	0	50	\$ -				4
5	850	800	50	50	0	100	\$ 60	0	В	В	850	0	\$ 60	Ş -	0	50	Ş -			\$ 60	0	50	Ş -				5
6	950	850	50	100	50	100	\$ 150	\$ 90	С	D	850	0	\$ 60	\$ 90	50	50	\$150.00	\$	-	\$ 600	50	50	\$ 600	Ş-	Ş -	Ş -	6
7	1020	900	50	120	70	100	\$ 220	\$ 160	С	D	830	20	\$ 60	\$ 160	120	50	\$220.00	Ş	-	\$ 600	70	30	\$ 600	Ş-	Ş -	Ş -	7
8	1080	950	50	130	80	100	\$ 250	\$ 190	C	D	820	30	\$ 60	\$ 190	150	50	\$250.00	Ş	-	\$ 600	80	20	\$ 600	Ş-	Ş -	Ş -	8
10	1130	1000	50	130	80	100	\$ 330	\$ 270	C	D	820	30	\$ 60 ¢ co	\$ 270	230	50	\$330.00	Ş	-	\$ 600 ¢ 600	80	20	\$ 600 ¢ coo	Ş- د	Ş -	\$ - ¢	10
10	1190	1050	50	140	90	100	\$ 390 ¢ 440	\$ 330 ¢ 200	C C	D	810	40	\$ 60 ¢ c0	\$ 330 ¢ 200	290	50	\$390.00	ې د	-	\$ 600 ¢ 600	90	10	\$ 600 ¢ 600	ې- د	\$ - ¢	\$- ¢	10
11	1240	11100	50	140	90	100	\$ 440 \$ 450	\$ 380 \$ 200	C C	D	810	40	\$ 60 ¢ 60	\$ 380 ¢ 200	340	50	\$440.00	ې د	-	\$ 600 ¢ 600	90	10	\$ 600 ¢ 600	ې- د	\$ - ¢	ን - ረ	11
12	1230	1120	50	140	90	100	\$ 430	\$ 590 \$ 040	D		010	40	φ 60 \$ 60	\$ 040	250	50	\$450.00	ې د	-	\$ 000	90	10	\$ 600	-د د۱۵۰	\$ 400	- ç \$ 100	12
13 17	1200	1150	50	140	90	60	\$1,000	\$ 940 \$ 550	D R		050 850	20	φ 00 \$ 60	\$ 940 \$ 940	350	50 50	9430.00 \$150.00	ې د	550.00	\$ 1,000	90 90	10	\$ 600 \$ 600	,2400 \$∕100	\$ 400 \$ 400	\$ 400 \$ 400	1/
15	1320	1180	50	140	90	30	\$1.000	\$ 520	c	D	850	0	\$ 60	\$ 940	380	20	\$480.00	Ś	520.00	\$ 1.000	90	10	\$ 600	\$400	\$ 400	\$ 400	15

MA S.R. Proposal: Enhance Current Market Structure

- MA proposes that PJM keep hour ahead Tier 2 Sync Market, market definitions and associated assignments
 - Tier 2 S.R. hour ahead assignments should be based on expectations of next hour system conditions and prices
 - Hour ahead Tier 2 S.R. assignments should continue to be taken as a "given" going into within hour optimization
 - As today, within hour adjustments (additions) to Tier 2 S.R. made in real time
 - Enhance within hour adjustments (additions) via use of reserves modeled as a constraint

MA Synchronized Reserve Proposal: Advantages

- Consistent with current market structures
 - "Known" methodology and still improves within hour dispatch
 - Better at dealing with resource limitations that may otherwise limit reserve availability
 - More consistent with reserve requirements (90 minutes to rebuild)
- Will avoid issues of 5 minute "cycling"
 - Should provide for and encourage availability of more reserve resources
 - Allows continued participation by less flexible units
 - Allows continued participation by DR
 - May allow a means to properly recognize scarcity and avoid false positives (morning ramp)

Single opportunity cost for reserves?

- Within hour reserves need to be valued, but not a "market"
- Within hour reserves is a "residual" product priced relative the actual market: Energy
- Cannot define the cost of reserves without referencing the energy price
 - Reserve cost is the opportunity cost of producing reserves instead of energy
 - Opportunity cost is bus dependent
 - Full transparency from LMP at the bus

Single opportunity cost for reserves?

- Using a single reserve cost within the hour can provide perverse incentives where LMP varies within the reserve area
 - Multiple marginal units
 - Multiple opportunity costs under price separation
 - Location specific determination of opportunity cost needed to maintain system control

Frequency Issue: Morning Pickup and Scarcity

- There needs to be a way for the mechanism(s) to differentiate between the morning pickup situation and a scarcity event.
 - Supply stack is not "exhausted"
- Objective should be to develop a tool that internalizes the decision making process used by operations
- Morning pick up is normal. Not an emergency event.
- Repeated morning pick "emergencies" would indicate faulty mechanism and/or scheduling problem

Frequency Issue: Morning Pickup and Scarcity

During the morning pickup

- Reserves are used
- But temporary situation
 - So long as reserves can be restored in 90 minutes
- No emergency actions are taken or required.

Morning Pickup and Scarcity

- Mechanism needs to differentiate between a reserve draw down when it is not an issue and when it is an issue
- Operations knows that generation is on the way
 - Experience and DA schedules
 - Not an emergency
- Should look at ways to incorporate DA scheduling information to differentiate scarcity from non scarcity events
 - Look ahead capability

Accounting for Emergency Procedures

- Goals in accounting for emergency procedures:
 - Recognize that emergency procedures will impact reserve position and without intervention may cause prices to fall inappropriately
- Approach should offset MW provided by administrative emergency procedures not priced in the PJM market:
 - Manual load dump
 - Voltage reduction

Accounting for Emergency Resources

- Goals in accounting for emergency resources:
 - Recognize that emergency resources, such as max emergency and emergency DR, are economic resources.
- During stated emergencies, approach would not offset qualifying MW provided by emergency resource MW priced in the PJM markets:
 - Emergency DR
 - Maximum emergency MW
 - Capacity recalls
 - Emergency purchases

Accounting for Emergency Resources

Capacity recalls

- Part of the definition of a capacity resource
- As part of final scarcity design need written procedures on when and how to recall
- As part of final scarcity design need documented methodology to determine the amount of recallable capacity
- As part of final scarcity design need data based on methodology

Accounting for Emergency Resources

- Include emergency resource MW as energy:
 - Will help eliminate gaming opportunities created by allowing changing MW classifications (economic/emergency) during times of scarcity to affect market prices
 - Will properly recognize available qualifying market resources that are available for dispatch or have been deployed
 - Will avoid measurement error of calculating offsets for deployed (economic/emergency) resources
 - Will allow the optimization software to recognize and appropriately price changes in system conditions

Issue: Dispatch of Emergency Demand Response Resources

- Locational Dispatch of Emergency Demand Response (DR)
 - Identified issues:
 - Emergency DR Resources are deployed in bulk
 - o 1 hour and 2 hour notification times
 - Inadequate metering (data regarding the amount of DR available vs. already deployed)
 - **o** Unknown location of the resource.
 - Zone vs. Reserve Area?
 - Constrained side of a constraint?
 - Need other options to call emergency DR in a more refined way to better maintain operational control

PJM Proposal: Dispatch of Emergency Demand Response Resources

- PJM proposals to date have focused on identifying resources by zone
 - Calling by price first
 - By groups of MW (% or totals)
 - Trying to find a way to have emergency DR set price
 - Working on ways to get better "real time" data

MA Comments: Dispatch of Emergency Demand Response Resources

- To improve reliability, the goal should be to improve the ability to dispatch resources on a locational basis
 - Metering (data regarding the amount of DR available vs. already deployed)
 - Need hourly data validation of dispatched/available MW

MA Comments: Dispatch of Emergency Demand Response Resources

- Absent telemetry and location, DR should not be able to set price
- Absent telemetry and location, allowing DR to set price will cause control issues under scarcity
 - Not consistent with locational pricing
 - Pricing not consistent with dispatch
 - Any change should be consistent with application to DR in all hours
 - Would need to develop mitigation rules for DR in energy market

Marginal Unit Designation Issues

- At issue:
 - High priced, inflexible units (or units that are ramp constrained during times of reserve constraint violation) have been dispatched and are needed
 - Inflexibility negates marginal status and confers it on lower cost flexible resources

Marginal Unit Designation Issues

- Use the logic that allows inflexible, but needed CTs to be marginal
 - Apply to all needed, inflexible otherwise marginal units
 - Logic needs to be applicable during scarcity event

