Opportunity Cost Calculator

CDTF October 2009

Monitoring Analytics

Primary Differences Between Monitoring Analytics and PJM

Simple and User Friendly Interface√Ability to Handle Rolling Time Period Restrictions√Minimum Run Time & Start Up Costs√Adjustment for Negative Margins√Dual Fuel Inputs√Spot vs. Contract Monthly Fuel Flexibility√Automatic Updates√MMU Reviewable√

2

MMU

Simple and User Friendly Interface

- Inputs gathered by web portal
- Login with eFuel account
- Easy to use
- Historical / futures data gathered from PJM and MMU databases
 - No need for users to input
- Changes to calculator can be implemented and tested with no impact on users
 - No requirement for additional data entry

Sample Input Screen

Monitoring Analytics Opportunity Cost Calculator Inputs

Percent Percent

Percent

Unit Characteristics

				of Fuel	of Fuel	Fuel type A	Fuel type B	Fuel type A	Fuel type B	Price for Fuel	Price for Fuel		
Data Field Name	Input Value	Units	Month	type A	type B	is Contract	is Contract	is Spot	is Spot	type A	type B		
Unit_ID	11111111		Jan	75%	25%	0%	100%	100%	0%	N/A	\$4.0 per mmBtu		
Does this Unit have a 12-Month Rolling Run-Hour Restriction?	Yes	Yes or No	Feb	75%	25%	0%	100%	100%	0%	N/A	\$4.0 per mmBtu		
Minimum Run Time (Default is 1 Hour)	8	hours	Mar	75%	25%	0%	100%	100%	0%	N/A	\$4.0 per mmBtu		
Startup Costs	\$500.00	dollars	Apr	75%	25%	0%	100%	100%	0%	N/A	\$4.0 per mmBtu		
Summer Average Heat Rate	12.3	mmbtu/mwh	May	75%	25%	0%	100%	100%	0%	N/A	\$4.0 per mmBtu		
Winter Average Heat Rate	12.1	mmbtu/mwh	Jun	75%	25%	0%	100%	100%	0%	N/A	\$4.0 per mmBtu		
NOx Emission Rate (annual)	0.328	lbs/mmbtu	Jul	75%	25%	0%	100%	100%	0%	N/A	\$4.0 per mmBtu		
NOx Emission Rate (seasonal)	0.328	lbs/mmbtu	Aug	75%	25%	0%	100%	100%	0%	N/A	\$4.0 per mmBtu		
SO2 Emission Rate	1.24	lbs/mmbtu	Sep	75%	25%	0%	100%	100%	0%	N/A	\$4.0 per mmBtu		
CO2 Emission Rate	160.56	lbs/mmbtu	Oct	75%	25%	0%	100%	100%	0%	N/A	\$4.0 per mmBtu		
VOM	2.22	\$/mwh	Nov	75%	25%	0%	100%	100%	0%	N/A	\$4.0 per mmBtu		
FMU	5	\$/mwh	Dec	75%	25%	0%	100%	100%	0%	N/A	\$4.0 per mmBtu		
Scaling Factor	10%	percent											
		-											
Fuel Inputs			Scheduled Outages				Run Hour Limitation: 1000 hours				hours		
Platt's Forward Fuel Index for Fuel Type A CTL APP 12500B 1.2S CSX 💌			Start: 05JAN2009:05:00:00				Run Hours Used to Date: 400 hours						
NATURAL GAS		^	End: 25JAN2009:10:00:00										
Chicago CG Fwd													
Transco Zn6 NY Fwd			Outages Saved										
Columb	ia Gas Appal Fwd COAL		Start End										
CTL APP 12000B 1.65 BRG CTL APP 12300B 1.25 C5X			05IAN2009:05:00:00_25IAN2009:10:00:00				Calculate Opportunity Cost						
			01FEB2009:05:00:00 02FEB2009:00:00										
Platt's Forward Fuel Index for Fuel Type B PRB 8800B .35S RAII			05DEC2009:05:00:00 09DEC2009:10:00:00										
(if dual fuel type unit)		J											
(

4

Spot vs. Contract Monthly Fuel Prices

Percent

Percent

Contract

Contract

Percent

Sample Output Screen

Monitoring Analytics Opportunity Cost Calculator Output														
Unit Characteristics	t Characteristics					Spot vs. Contract Monthly Fuel Prices								
				Percent	Percent	Percent	Percent	Percent	Percent	Contract	Contract			
				of Fuel	of Fuel	Fuel type A	Fuel type B	Fuel type A	Fuel type B	Price for Fuel	Price for Fuel			
Data Field Name	Input Value	Units	Month	type A	type B	is Contract	is Contract	is Spot	is Spot	type A	type B			
Unit_ID	11111111		Jan	75%	25%	0%	100%	100%	0%	N/A	\$4.0 per mmBtu			
Does this Unit have a 12-Month Rolling Run-Hour Restriction?	Yes	Yes or No	Feb	75%	25%	0%	100%	100%	0%	N/A	\$4.0 per mmBtu			
Minimum Run Time (Default is 1 Hour)	8	hours	Mar	75%	25%	0%	100%	100%	0%	N/A	\$4.0 per mmBtu			
Startup Costs	\$500.00	dollars	Apr	75%	25%	0%	100%	100%	0%	N/A	\$4.0 per mmBtu			
Summer Average Heat Rate	12.3	mmbtu/mwh	May	75%	25%	0%	100%	100%	0%	N/A	\$4.0 per mmBtu			
Winter Average Heat Rate	12.1	mmbtu/mwh	Jun	75%	25%	0%	100%	100%	0%	N/A	\$4.0 per mmBtu			
NOx Emission Rate (annual)	0.328	lbs/mmbtu	Jul	75%	25%	0%	100%	100%	0%	N/A	\$4.0 per mmBtu			
NOx Emission Rate (seasonal)	0.328	lbs/mmbtu	Aug	75%	25%	0%	100%	100%	0%	N/A	\$4.0 per mmBtu			
SO2 Emission Rate	1.24	lbs/mmbtu	Sep	75%	25%	0%	100%	100%	0%	N/A	\$4.0 per mmBtu			
CO2 Emission Rate	160.56	lbs/mmbtu	Oct	75%	25%	0%	100%	100%	0%	N/A	\$4.0 per mmBtu			
VOM	2.22	\$/mwh	Nov	75%	25%	0%	100%	100%	0%	N/A	\$4.0 per mmBtu			
FMU	5	\$/mwh	Dec	75%	25%	0%	100%	100%	0%	N/A	\$4.0 per mmBtu			
Scaling Factor	10%	percent												
<u>Fuel Inputs</u>	Outage			es Saved				Run Hour Limitation:		1000	hours			
Platt's Forward Fuel Index for Fuel Type A	CTL APP 12500B 1.2S CSX]	<u>Start</u>	<u>E</u>	nd			Run Hours L	Jsed to Date:	400	hours			
			05JAN2009:05:00:00	25JAN200	9:10:00:00									
Platt's Forward Fuel Index for Fuel Type B	PRB 8800B .355 RAIL]	01FEB2009:05:00:00	02FEB200	9:00:00:00									
(if dual fuel type unit)		-	05DEC2009:05:00:00	09DEC200	9:10:00:00)								
	Data Field Name		Input	Value	Units									
	Opportunity Cost Component 20			55	\$/mwb									
					ç, invî									
	Run Hours Used to Date 4)0	hours									

5

Ability to Handle Rolling Time Period Restrictions

- Proposed change to manual:
 - Accounts for restrictions based on calendar year, rolling 12 months, or rolling N days

Minimum Run Time & Start Up Costs

- **Proposed change to manual:**
 - Accounts for parameter limits of various unit types
 - Improves accuracy of calculation substantially and gives accurate opportunity cost adders based on actual unit performance
 - For minimum run time, the adder is the average of a block of hours, rather than the minimum of hours
 - Models units as they operate in real-time or offer in day-ahead

Negative Margins

- Proposed change to manual:
 - Negative margins reflect actual margins from prior years
 - Accurately accounts for yearly volatility
 - Reflects actual values of hours in that year
 - Example:

700th Margin (2006) = -\$100 700th Margin (2007) = -\$100 700th Margin (2008) = \$75

Maximum Opportunity Cost Component MMU Method = Max(0, -\$41.67) = \$0 PJM Method = \$25

Dual Fuel Inputs

- Proposed change to manual:
 - Permits use of dual fuels
 - Necessary for units that may burn multiple fuels
 - For units with restrictions on consumption of specific fuels, this method allows accounting for both fuels in the same calculation.
 - Example:
 - Run hour restriction of combined gas and oil output
 - **o** Unit has restriction only when burning secondary fuel

Spot vs. Contract Monthly Fuel Flexibility

- Proposed change to manual:
 - Flexibility to choose spot price for one fuel and contract price for another fuel
 - Allows members to identify when a contract will end
 - If contract ends in the middle of a compliance period, permits use of spot prices or new contract prices
 - No need for participants to input fuel spot prices

Automatic Updates

- Calculator saves inputs from previous days, including outages
- Automatically updates hours run, without inputs from participants
- Recalculates opportunity cost adder daily, without inputs from participants
- No need for changes unless units change fuel or outage schedule
- Daily automatic updates posted overnight

MMU Reviewable

- Using the MMU calculator makes all opportunity cost adders derived from the calculator faster and easier for the MMU to review and approve
- Smaller chance of error given fewer user inputs

©2009