

PJM's Challenge—Scarcity Pricing in the Context of Least Cost, Security Constrained Dispatch

CRRI

Howard J. Haas PJM MMU

May 17, 2007

26th Annual Eastern Conference

- Scarcity?
 - Scarcity exists when supply is less than, or equal to, demand where demand includes a level of operating reserves.
- Scarcity Pricing?

• Why is it important?

⊅∕pjm

Table 3, Vol. 1 Total net revenue and 20-year, levelized fixed cost for new entry CT, CC and CP generators: Economic dispatch assumed

	СТ		CC	;	CP	
	Economic Dispatch Net Revenue	20-Year Levelized Fixed Cost	Economic Dispatch Net Revenue	20-Year Levelized Fixed Cost	Economic Dispatch Net Revenue	20-Year Levelized Fixed Cost
1999	\$74,537	\$72,207	\$100,700	\$93,549	\$118,021	\$208,247
2000	\$30,946	\$72,207	\$47,592	\$93,549	\$134,563	\$208,247
2001	\$63,462	\$72,207	\$86,670	\$93,549	\$129,271	\$208,247
2002	\$28,260	\$72,207	\$52,272	\$93,549	\$112,131	\$208,247
2003	\$10,565	\$72,207	\$35,591	\$93,549	\$169,510	\$208,247
2004	\$8,543	\$72,207	\$35,785	\$93,549	\$133,125	\$208,247
2005	\$10,437	\$72,207	\$40,817	\$93,549	\$228,430	\$208,247
2006	\$14,948	\$80,315	\$49,529	\$99,230	\$182,461	\$267,792
Avg	\$30,212	\$73,221	\$56,120	\$94,259	\$150,939	\$215,690

- Why is it a challenge for RTOs?
 - Administrative tools needed to maintain reliability
 - Limited demand response in real time
 - Supply must equal demand at all times
 - Many of the tools force demand to equal supply:
 - Voltage reductions
 - Load dump
 - Active load management
 - Other tool provide more supply:
 - Loading maximum emergency generation
 - Emergency purchases
 - Recalling energy

- Why is it a challenge for RTOs?
 - Administrative tools needed to maintain reliability
 - These tools tend to suppress market prices in times of scarcity

- Why is it a challenge for RTOs?
 - Mitigation of market power
 - Market rules designed to promote competitive outcomes
 - Under FERC standards prices are reasonable when they are the result of a competitive market, or barring a competitive market, on a market with sufficient mitigation to allow a competitive outcome.

- Why is it a challenge for RTOs?
 - Mitigation of market power
 - Market mitigation rules can fail to differentiate between market power and scarcity signals.
 - An issue in every market:
 - Conduct and Impact
 - Out of merit-based "Direct Mitigation"

The Challenge of Scarcity Pricing: PJM's footprint and its zones

www.pjm.com 7 ©2007 PJM

- 3 pivotal supplier test
 - More precise market mitigation
 - Market structure test
 - Behavior test
 - Impact test
- Modification of Frequently Mitigated Units rules
 - Local area scarcity rule
 - Provides an adder to unit cost offers if the unit qualifies

Table 2-5 Annual offer-capping statistics: Calendar years 2002 to2006

	Real Tim	ie	Day Ahead		
	Unit Hours Capped	MW Capped	Unit Hours Capped	MW Capped	
2002	1.6%	0.3%	0.7%	0.1%	
2003	1.1%	0.3%	0.4%	0.2%	
2004	1.3%	0.4%	0.6%	0.2%	
2005	1.8%	0.4%	0.2%	0.1%	
2006	1.0%	0.2%	0.4%	0.1%	

Table 2-8 Three pivotal supplier test details for regional constraints: March 1, to December 31, 2006

Constraint	Period	Average Constraint Relief (MW)	Average Effective Supply (MW)	Average Number Owners	Average Number Owners Passing	Average Number Owners Failing
5004/5005 Interface	Peak	110	397	17	14	3
	Off Peak	107	376	17	14	3
Bedington - Black Oak	Peak	57	220	12	9	3
	Off Peak	63	239	12	9	2
Kammer	Peak	83	285	17	13	4
	Off Peak	77	301	15	12	3
AP South	Peak	101	271	16	10	6
	Off Peak	97	306	15	9	6
West	Peak	138	829	17	17	0
	Off Peak	140	739	16	15	1

2007 changes to markets and market rules

- RPM
 - Overhauled capacity market
 - Geographic price signals

Figure 5-6 PJM Daily and Monthly/Multimonthly CCM performance: June 1999 to December 2006

- Scarcity Pricing Rules
 - Triggers: emergency energy request events; maximum emergency generation events; manual load dump events; and voltage reduction events.
 - Based on the implementation of one or more of these emergency actions over an area consisting of two or more contiguous zones with 5 percent or greater positive distribution factor ("dfax") relative to concurrently binding 500 kV or greater transmission constraints.
 - Effect: Price goes to the highest offer of a unit running for PJM within the zone.

- The two days with potential scarcity pricing event hours in 2005 were July 26 and July 27.
- voltage reduction and maximum emergency generation loaded.

- July 26, 2005
 - Ten 500 kV or greater transmission constraints
 - Mid-Atlantic Region, BGE and PEPCO, had a maximum emergency generation loaded action concurrently in effect for approximately two hours (1636 through 1830).

- July 27, 2005
 - Eleven 500 kV or greater transmission constraint
 - BGE, PEPCO, PSEG, PECO, JCPL and eastern PPL comprise a contiguous subset of the Mid-Atlantic Region and Dominion
 - Max emergency generation loaded and voltage redductions: 3.5 to 4.5 hours

• No events met the criteria in 2006

Figure 2-1 Average PJM aggregate supply curves: Summers 2005 and 2006

Year	Date	EPT Hour Ending	PJM Load (MW)	Difference (MW)
1999	06-Jul-99	1400	59,365	NA
2000	26-Jun-00	1600	56,727	(2,638)
2001	09-Aug-01	1500	54,015	(2,712)
2002	14-Aug-02	1600	63,762	9,747
2003	22-Aug-03	1600	61,500	(2,262)
2004	03-Aug-04	1700	77,887	16,387
2005	26-Jul-05	1600	133,763	55,876
2006	02-Aug-06	1700	144,644	10,881

Figure 2-2 PJM summer peak-load comparison: Wednesday, August 2, 2006, and Tuesday, July 26, 2005

pjm

Figure 2-8 PJM average real-time load: Calendar years 2005 to 2006

• High Load

- When hourly demand, including the day-ahead operating reserve target, equals 90 percent or more of total, within-hour supply in the absence of non market administrative intervention.
- Administrative interventions added to demand (ALM) or subtracted from supply (Emergency Generation loaded)

• Scarcity

- When hourly demand, including the day-ahead operating reserve target is greater than, or equal to, within-hour supply in the absence of non market administrative intervention.
- Administrative interventions added to demand (ALM) or subtracted from supply (Emergency Generation loaded)

Figure 3-4 High-load day hourly load and average hourly load: Summer 2006

- Active Load Management (ALM)
 - August 2 and 3
- Max Emergency Generation Alert
 - July 17-18, July 31, August 1-3

Figure 3-5 Net within-hour resources: July 17 to July 19, and July 31, 2006

Figure 3-6 Net within-hour resources: August 1 to August 3, and August 7, 2006

Within-hour maximum emergency capacity relative to hourly demand in excess of within-hour economic resources: August 1 to August 2, 2006

Figure 2-12 Monthly load-weighted, average LMP: Calendar years 2002 to 2006

Table 2-46 PJM load-weighted, average LMP (Dollars per MWh): Calendar years 1998 to 2006

	Load-Weighted, Average LMP			Year-to-Year Change		
	Average	Median	Standard Deviation	Average	Median	Standard Deviation
1998	\$24.16	\$17.60	\$39.29	NA	NA	NA
1999	\$34.07	\$19.02	\$91.49	41.0%	8.1%	132.9%
2000	\$30.72	\$20.51	\$28.38	(9.8%)	7.8%	(69.0%)
2001	\$36.65	\$25.08	\$57.26	19.3%	22.3%	101.8%
2002	\$31.58	\$23.40	\$26.73	(13.8%)	(6.7%)	(53.3%)
2003	\$41.23	\$34.95	\$25.40	30.6%	49.4%	(5.0%)
2004	\$44.34	\$40.16	\$21.25	7.5%	14.9%	(16.3%)
2005	\$63.46	\$52.93	\$38.10	43.1%	31.8%	79.3%
2006	\$53.35	\$44.40	\$37.81	(15.9%)	(16.1%)	(0.8%)

Figure 2-13 Spot average fuel price comparison: Calendar years 2005 to 2006

Table 2-47 PJM fuel-cost-adjusted, load-weighted LMP (Dollars per MWh): Year-over-year method

	2005 Load- Weighted LMP	2006 Fuel-Cost- Adjusted, Load- Weighted LMP	Change
Average	\$63.46	\$59.89	(5.6%)
Median	\$52.93	\$49.99	(5.5%)
Standard Deviation	\$38.10	\$38.34	0.6%

Table 2-50 Components of annual PJM load-weighted,average LMP: Calendar year 2006

Element	Contribution to LMP	Percent
Coal	\$20.67	38.7%
Gas	\$17.23	32.3%
Oil	\$2.65	5.0%
Uranium	\$0.00	0.0%
Wind	\$0.01	0.0%
NOX	\$1.53	2.9%
S02	\$5.39	10.1%
VOM	\$2.67	5.0%
Markup	\$1.54	2.9%
Constrained Off	\$1.06	2.0%
NA	\$0.59	1.1%

www.pjm.com 33 ©2007 PJM

Table 2-36Comparison of exempt and non-exemptmarkup component:Calendar year 2006

	Units Marginal	Markup Component
Non-Exempt Units	667	\$0.98
Exempt Units	43	\$0.56

Table 2-39 Markup contribution of exempt and non-exempt units: Calendar year 2006

	Exempt Markup Component	Non-exempt Markup Component	Total
High-Load Days	\$0.11	\$0.49	\$0.60
Balance of Year	\$0.45	\$0.49	\$0.94
Total	\$0.56	\$0.98	\$1.54

- Revisiting Scarcity Pricing Rules
 - Well designed markets should not require market power abuse to achieve sustainability
 - Unlikely that market power alone could achieve sustainability and the reliable functioning of markets
 - The use of administrative steps to maintain system reliability a good proxy for regional scarcity conditions, but changes needed:
 - Every "un-priced" tool used to trigger a scarcity signal.
 - Cumulative, predetermined adders based on use of administrative steps to maintain the system during periods of relative high load.
 - Signals need to be locational
 - Adders to unit offers would allow LMP signals to continue to provide economic signals
 - Need an operational definition of local scarcity
 - Have such a mechanism largely in place due to data available from the 3 pivotal supplier test.
 - Should provide adders to offers of units in local scarcity conditions
 - Should be based on the cost of new entry, and sufficient to encourage entry.

36 ©2007 PJM

www.pjm.com

 Scarcity pricing rules should be part of an overall market design, which allows for sustainability and reliability. Revenues integrated into RPM calculations, etc.

- Energy market prices alone not enough to sustain this market
 - Price ranges and unit characteristics define discrete markets

