Capacity Market

Each organization serving PJM load must meet its capacity obligations through the PJM Capacity Market, where load serving entities (LSEs) must pay the locational capacity price for their zone. LSEs can also construct generation and offer it into the capacity market, enter into bilateral contracts, develop demand resources and energy efficiency (EE) resources and offer them into the capacity market, or construct transmission upgrades and offer them into the capacity market.

The Market Monitoring Unit (MMU) analyzed market structure, participant conduct and market performance in the PJM Capacity Market, including supply, demand, concentration ratios, pivotal suppliers, volumes, prices, outage rates and reliability. The conclusions are a result of the MMU’s evaluation of the last Base Residual Auction, for the 2021/2022 Delivery Year.

Table 5-1 The capacity market results were not competitive

<table>
<thead>
<tr>
<th>Market Element</th>
<th>Evaluation</th>
<th>Market Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market Structure: Aggregate Market</td>
<td>Not Competitive</td>
<td></td>
</tr>
<tr>
<td>Market Structure: Local Market</td>
<td>Not Competitive</td>
<td></td>
</tr>
<tr>
<td>Participant Behavior</td>
<td>Not Competitive</td>
<td></td>
</tr>
<tr>
<td>Market Performance</td>
<td>Not Competitive</td>
<td>Mixed</td>
</tr>
</tbody>
</table>

- The aggregate market structure was evaluated as not competitive. For almost all auctions held from 2007 to the present, the PJM region failed the three pivotal supplier test (TPS), which is conducted at the time of the auction. Structural market power is endemic to the capacity market.
- The local market structure was evaluated as not competitive. For almost every auction held, all LDAs have failed the TPS test, which is conducted at the time of the auction.
- Participant behavior was evaluated as not competitive in the 2021/2022 RPM Base Residual Auction. Market power mitigation measures were applied when the capacity market seller failed the market power test for the auction, the submitted sell offer exceeded the defined offer cap, and the submitted sell offer, absent mitigation, would increase the market clearing price. But the net CONE times B offer cap under the capacity performance design, in the absence of performance assessment hours, exceeds the competitive level and should be reevaluated for each BRA.
- Market performance was evaluated as not competitive based on the 2021/2022 RPM Base Residual Auction. Although structural market power exists in the Capacity Market, a competitive outcome can result from the application of market power mitigation rules. The outcome of the 2021/2022 RPM Base Residual Auction was not competitive as a result of participant behavior which was not competitive, specifically offers which exceeded the competitive level.
- Market design was evaluated as mixed because while there are many positive features of the Reliability Pricing Model (RPM) design and the capacity performance modifications to RPM, there are several features of the RPM design which still threaten competitive outcomes. These include the definition of DR which permits inferior products to substitute for capacity, the replacement capacity issue, the definition of unit offer parameters, the inclusion of imports which are not substitutes for internal capacity resources, and the definition of the default offer cap.

1 The values stated in this report for the RTO and LDAs refer to the aggregate level including all nested LDAs unless otherwise specified. For example, RTO values include the entire PJM market and all LDAs. Rest of RTO values are RTO values net of nested LDA values.
2 In the 2008/2009 RPM Third Incremental Auction, 18 participants in the RTO market passed the TPS test. In the 2018/2019 RPM Second Incremental Auction, 36 participants in the RTO market passed the test.
3 In the 2012/2013 RPM Base Residual Auction, six participants included in the incremental supply of EMAAC passed the TPS test. In the 2014/2015 RPM Base Residual Auction, seven participants in the incremental supply in MAAC passed the TPS test. In the 2021/2022 RPM First Incremental Auction, two participants in the incremental supply in EMAAC passed the TPS test.
Overview

RPM Capacity Market

Market Design

The Reliability Pricing Model (RPM) Capacity Market is a forward-looking, annual, locational market, with a must offer requirement for Existing Generation Capacity Resources and mandatory participation by load, with performance incentives, that includes clear market power mitigation rules and that permits the direct participation of demand-side resources.

Under RPM, capacity obligations are annual. Base Residual Auctions (BRA) are held for delivery years that are three years in the future. Effective with the 2012/2013 Delivery Year, First, Second and Third Incremental Auctions (IA) are held for each delivery year. Prior to the 2012/2013 Delivery Year, the Second Incremental Auction was conducted if PJM determined that an unforced capacity resource shortage exceeded 100 MW of unforced capacity due to a load forecast increase. Effective January 31, 2010, First, Second, and Third Incremental Auctions are conducted 20, 10, and three months prior to the delivery year. Also effective for the 2012/2013 Delivery Year, a Conditional Incremental Auction may be held if there is a need to procure additional capacity resulting from a delay in a planned large transmission upgrade that was modeled in the BRA for the relevant delivery year.

The 2019/2020 RPM Third Incremental Auction, the 2020/2021 RPM Second Incremental Auction, and the 2021/2022 RPM First Incremental Auction were conducted in the first nine months of 2019. FERC granted PJM’s request for waiver of its Open Access Transmission Tariff to delay the 2022/2023 RPM Base Residual Auction from May 2019 to August 2019. FERC subsequently denied PJM’s motion seeking clarification of the June 29, 2018, Order (163 FERC ¶ 61,236) and directed PJM not to run the 2022/2023 BRA in August 2019. On June 9, 2015, FERC accepted changes to the PJM capacity market rules proposed in PJM’s Capacity Performance (CP) filing. For a transition period during the 2018/2019 and 2019/2020 delivery years, PJM will procure two product types, Capacity Performance and Base Capacity. PJM also procured Capacity Performance resources in two transition auctions for the 2016/2017 and 2017/2018 delivery years. Effective with the 2020/2021 Delivery Year, PJM will procure a single capacity product, Capacity Performance. CP Resources are expected to be available and capable of providing energy and reserves when needed at any time during the delivery year. Effective for the 2018/2019 through the 2019/2020 delivery years, a Base Capacity Demand Resource Constraint and a Base Capacity Resource Constraint are established for each modeled LDA. These maximum quantities are set for reliability purpose to limit the quantity procured of the less available products, including Base Capacity Generation Resources, Base Capacity Demand Resources, and Base Capacity Energy Efficiency Resources. The Capacity Performance (CP) Transition Incremental Auctions (IAs) were held as part of a five year transition to a single capacity product type in the 2020/2021 Delivery Year. Participation in the CP Transition IAs was voluntary. If a resource cleared a CP Transition IA and had a prior commitment for the relevant delivery year, the existing commitment was converted to a CP commitment, which is subject to the CP performance requirements and nonperformance charges. The Transition IAs were not designed to minimize the cost of purchasing Capacity Performance resources for the two delivery years and were not designed to maximize economic welfare for the two delivery years.

RPM prices are locational and may vary depending on transmission constraints. Existing generation capable of qualifying as a capacity resource must be offered into RPM auctions, except for resources owned by entities that elect the fixed resource requirement (FRR) option. Participation by LSEs is mandatory, except for those entities that elect the FRR option. There is an administratively determined demand curve that defines scarcity pricing levels and that, with the supply curve derived from capacity offers, determines market prices in each BRA. RPM rules provide performance incentives for

4 The terms PJM Region, RTO Region and RTO are synonymous in this report and include all capacity within the PJM footprint.
6 See Letter Order, FERC Docket No. ER10-366-000 (January 22, 2010).
7 See 126 FERC ¶ 61,275 at P 88 (2009).
8 See 164 FERC ¶ 61,236 (2018).
9 See 168 FERC ¶ 61,051 (2019).
10 See 131 FERC ¶ 61,208 (2015).
11 See “PJM Manual 18: PJM Capacity Market,” § 1.5 Transition to Capacity Performance, Rev. 42 (July 25, 2019).
12 Transmission constraints are local capacity import capability limitations (low capacity emergency transfer limit [CETL] margin over capacity emergency transfer objective [CETO]) caused by transmission facility limitations, voltage limitations or stability limitations.
Section 5 Capacity

generation, including the requirement to submit generator outage data and the linking of capacity payments to the level of unforced capacity, and the performance incentives have been strengthened significantly under the Capacity Performance modifications to RPM. Under RPM there are explicit market power mitigation rules that define the must offer requirement, that define structural market power based on the marginal cost of capacity, that define offer caps, that define the minimum offer price, and that have flexible criteria for competitive offers by new entrants. Market power mitigation is effective only when these definitions are up to date and accurate. Demand resources and energy efficiency resources may be offered directly into RPM auctions and receive the clearing price without mitigation.

Market Structure

• RPM Installed Capacity. During the first nine months of 2019, RPM installed capacity increased 6.8 MW or 0.0 percent, from 186,496.1 MW on January 1 to 186,502.9 MW on September 30. Installed capacity includes net capacity imports and exports and can vary on a daily basis.

• RPM Installed Capacity by Fuel Type. Of the total installed capacity on September 30, 2019, 42.1 percent was gas; 31.0 percent was coal; 17.3 percent was nuclear; 4.8 percent was hydroelectric; 3.4 percent was oil; 0.6 percent was wind; 0.4 percent was solid waste; and 0.4 percent was solar.

• Market Concentration. In the 2020/2021 RPM Second Incremental Auction all participants in the total PJM market as well as the LDA RPM markets failed the three pivotal supplier (TPS) test.13 In the 2021/2022 RPM First Incremental Auction, two participants in the EMAAC LDA market passed the TPS test. Offer caps were applied to all sell offers for resources which were subject to mitigation when the capacity market seller did not pass the test, the submitted sell offer exceeded the defined offer cap, and the submitted sell offer, absent mitigation, increased the market clearing price.14 15 16

• Imports and Exports. Of the 4,470.4 MW of imports in the 2021/2022 RPM Base Residual Auction, 4,051.8 MW cleared. Of the cleared imports, 1,909.9 MW (47.1 percent) were from MISO.

• Demand-Side and Energy Efficiency Resources. Capacity in the RPM load management programs was 11,042.8 MW for June 1, 2019, as a result of cleared capacity for demand resources and energy efficiency resources in RPM auctions for the 2019/2020 Delivery Year (13,231.6 MW) less replacement capacity (2,188.8 MW).

Market Conduct

• 2020/2021 RPM Second Incremental Auction. Of the 464 generation resources that submitted Capacity Performance offers, unit specific offer caps were calculated for six generation resources (1.3 percent).

• 2021/2022 RPM First Incremental Auction. Of the 301 generation resources that submitted Capacity Performance offers, unit specific offer caps were calculated for zero generation resources (0.0 percent).

Market Performance

• The 2019/2020 RPM Third Incremental Auction, the 2020/2021 RPM Second Incremental Auction, and the 2021/2022 RPM First Incremental Auction were conducted in the first nine months of 2019.17 The weighted average capacity price for the 2018/2019 Delivery Year is $172.09 per MW-day, including all RPM auctions for the 2018/2019 Delivery Year. The weighted average capacity price for the 2019/2020 Delivery Year

13 There are 27 Locational Deliverability Areas (LDAs) identified to recognize locational constraints as defined in “Reliability Assurance Agreement Among Load Serving Entities in the PJM Region”, Schedule 10:1. PJM determines, in advance of each BRA, whether the defined LDAs will be modeled in the given delivery year using the rules defined in OATT Attachment DD § 5.10(a)(i).
14 See OATT Attachment DD § 6.5.
15 Prior to November 1, 2009, existing DR and EE resources were subject to market power mitigation in RPM Auctions. See 129 FERC ¶ 61,081 at P 30 (2009).
16 Effective January 31, 2011, the RPM rules related to market power mitigation were changed, including revising the definition for Planned Generation Capacity Resource and creating a new definition for Existing Generation Capacity Resource for purposes of the must-offer requirement and market power mitigation, and treating a proposed increase in the capability of a generation capacity resource the same in terms of mitigation as a Planned Generation Capacity Resource. See 134 FERC ¶ 61,065 (2011).
is $109.82 per MW-day, including all RPM auctions for the 2019/2020 Delivery Year.

- For the 2019/2020 Delivery Year, RPM annual charges to load are $7.0 billion.
- In the 2021/2022 RPM Base Residual Auction, market performance was determined to be not competitive as a result of noncompetitive offers that affected market results.

Reliability Must Run Service
- Of the seven companies (23 units) that have provided RMR service, two companies (seven units) filed to be paid for RMR service under the deactivation avoidable cost rate (DACR), the formula rate. The other five companies (16 units) filed to be paid for RMR service under the cost of service recovery rate.

Generator Performance
- Forced Outage Rates. The average PJM EFORd for the first nine months of 2019 was 6.8 percent, a decrease from 7.3 percent for the first nine months of 2018.
- Generator Performance Factors. The PJM aggregate equivalent availability factor for the first nine months of 2019 was 84.7 percent, a slight increase from 84.6 percent for the first nine months of 2018.

Recommendations
The MMU recognizes that PJM has implemented the Capacity Performance Construct to replace some of the existing core market rules and to address fundamental performance incentive issues. The MMU recognizes that the Capacity Performance Construct addresses many of the MMU’s recommendations. The MMU’s recommendations are based on the existing capacity market rules. The status is reported as adopted if the recommendation was included in FERC’s order approving PJM’s Capacity Performance filing.

Definition of Capacity
- The MMU recommends the enforcement of a consistent definition of capacity resource. The MMU recommends that the requirement to be a physical resource be enforced and enhanced. The requirement to be a physical resource should apply at the time of auctions and should also constitute a commitment to be physical in the relevant delivery year. The requirement to be a physical resource should be applied to all resource types, including planned generation, demand resources and imports. (Priority: High. First reported 2013. Status: Not adopted.)
- The MMU recommends that DR providers be required to have a signed contract with specific customers for specific facilities for specific levels of DR at least six months prior to any capacity auction in which the DR is offered. (Priority: High. First reported 2016. Status: Not adopted.)

Market Design and Parameters
- The MMU recommends that the test for determining modeled Locational Deliverability Areas (LDAs) in RPM be redefined. A detailed reliability analysis of all at risk units should be included in the redefined model. (Priority: Medium. First reported 2013. Status: Not adopted.)
- The MMU recommends that the net revenue calculation used by PJM to calculate the net Cost of New Entry (CONE) VRR parameter reflect the actual flexibility of units in responding to price signals rather than using assumed fixed operating blocks that are not a result of actual unit limitations. The result of reflecting the actual flexibility is higher net revenues, which affect the parameters of the RPM demand curve and market outcomes. (Priority: High. First reported 2013. Status: Not adopted.)

18 The generator performance analysis includes all PJM capacity resources for which there are data in the PJM generator availability data systems (GADS) database. This set of capacity resources may include generators in addition to those in the set of generators committed as capacity resources in RPM. Data was downloaded from the PJM GADS database on November 1, 2019. EFORd data presented in state of the market reports may be revised based on data submitted after the publication of the reports as generation owners may submit corrections at any time with permission from PJM GADS administrators.

19 The MMU has identified serious market design issues with RPM and the MMU has made specific recommendations to address those issues. These recommendations have been made in public reports. See Table 5-2.

© 2019 Monitoring Analytics, LLC
• The MMU recommends that energy efficiency resources (EE) not be included on the supply side of the capacity market, because PJM’s load forecasts now account for future EE, unlike the situation when EE was first added to the capacity market. However, the MMU recommends that the PJM load forecast method should be modified so that EE impacts immediately affect the forecast without the long lag times incorporated in the current forecast method. If EE is not included on the supply side, there is no reason to have an add back mechanism. If EE remains on the supply side, the implementation of the EE add back mechanism should be modified to ensure that market clearing prices are not affected. (Priority: Medium. First reported 2016. Status: Not adopted.)

• The MMU recommends that PJM reduce the number of incremental auctions to a single incremental auction held three months prior to the start of the delivery year and reevaluate the triggers for holding conditional incremental auctions. (Priority: Medium. First reported 2013. Status: Not adopted.)

• The MMU recommends that PJM offer to sell back capacity in incremental auctions only at the BRA clearing price for the relevant delivery year. (Priority: Medium. First reported 2017. Status: Not adopted.)

• The MMU recommends changing the RPM solution method to explicitly incorporate the cost of make whole payments in the objective function. (Priority: Medium. First reported 2014. Status: Not adopted.)

• The MMU recommends that PJM clear the capacity market based on nodal capacity resource locations and the characteristics of the transmission system consistent with the actual electrical facts of the grid. The current nested LDA structure used in the capacity market does not adequately represent all the capacity transfers that are feasible among LDAs. Absent a fully nodal capacity market clearing process, the MMU recommends that PJM use a nonnested model for all LDAs and specify a VRR curve for each LDA separately. Each LDA requirement should be met with the capacity resources located within the LDA and exchanges from neighboring LDAs up to the transmission limit. LDAs should price separate if that is the result of the LDA supply curves and the transmission constraints. (Priority: Medium. First reported 2017. Status: Not adopted.)

• The MMU recommends that the maximum price on the VRR curve be defined as net CONE. (Priority: Medium. First reported Q1, 2019. Status: Not adopted.)

Offer Caps, Offer Floors, and Must Offer

• The MMU recommends use of the Sustainable Market Rule (SMR) in order to protect competition in the capacity market from nonmarket revenues.25 (Priority: High. First reported 2016. Status: Not adopted.)

• The MMU recommends that, as part of the MOPR unit specific standard of review, all projects be required to use the same basic modeling assumptions. That is the only way to ensure that projects compete on the basis of actual costs rather than on the basis of modeling assumptions.26 (Priority: High. First reported 2013. Status: Not adopted.)

• The MMU recommends that modifications to existing resources not be treated as new resources for purposes of market power related offer caps or MOPR offer floors. (Priority: Medium. First reported 2012. Status: Not adopted.)

• The MMU recommends that the RPM market power mitigation rule be modified to apply offer caps in all cases when the three pivotal supplier test is failed and the sell offer is greater than the offer cap. This will ensure that market power does not result in an increase in make whole payments. (Priority: Medium. First reported 2017. Status: Not adopted.)

• The MMU recommends that the offer cap for capacity resources be defined as the net avoidable cost rate (ACR) of each unit so that the clearing prices are a result of such net ACR offers, consistent with the fundamental

26 See 143 FERC ¶ 61,090 (2013) (“We encourage PJM and its stakeholders to consider, for example, whether the unit-specific review process would be more effective if PJM requires the use of common modeling assumptions for establishing unit-specific offer floors while, at the same time, allowing sellers to provide support for objective, individual cost advantages. Moreover, we encourage PJM and its stakeholders to consider these modifications to the unit-specific review process together with possible enhancements to the calculation of Net CONE.”); see also, Comments of the Independent Market Monitor for PJM, Docket No. EL13-535-001 (March 25, 2013); Complaint of the Independent Market Monitor for PJM v. Unnamed Participant, Docket No. EL12-63-000 [May 1, 2012]; Motion for Clarification of the Independent Market Monitor for PJM, Docket No. ER11-2875-000, et al. (February 17, 2013); Protest of the Independent Market Monitor for PJM, Docket No. EL11-2875-002 [June 2, 2011]; Comments of the Independent Market Monitor for PJM, Docket Nos. EL11-20 and ER11-2875 (March 4, 2011).
economic logic for a competitive offer of a CP resource. (Priority: High. First reported 2017. Status: Not adopted.)

- The MMU recommends that PJM develop a process for calculating a forward looking estimate for the expected number of Performance Assessment Intervals (H) to use in calculating the Market Seller Offer Cap (MSOC). The MMU recommends that the Nonperformance Charge Rate be left at its current level. The MMU recommends that PJM develop a forward looking estimate for the Balancing Ratio (B) during Performance Assessment Intervals (PAIs) to use in calculating the MSOC. Both H and B parameters should be included in the annual review of planning parameters for the Base Residual Auction, and should incorporate the actual observed reserve margins, and other assumptions consistent with the annual IRM study. (Priority: High. First reported 2017. Status: Not adopted.)

- The MMU recommends that capacity market sellers be required to request the use of minimum MW quantities greater than 0 MW (inflexible sell offer segments) and that the requests should only be permitted for defined physical reasons. (Priority: Medium. First reported 2018. Status: Not adopted.)

Performance Incentive Requirements of RPM

- The MMU recommends that a unit which is not capable of supplying energy consistent with its day-ahead offer reflect an appropriate outage. (Priority: Medium. First reported 2009. Status: Not adopted.)

- The MMU recommends that retroactive replacement transactions associated with a failure to perform during a PAH not be allowed and that, more generally, retroactive replacement capacity transactions not be permitted. (Priority: Medium. First reported 2016. Status: Not adopted.)

- The MMU recommends that there be an explicit requirement that capacity resource offers in the Day-Ahead Energy Market be competitive, where competitive is defined to be the short run marginal cost of the units. (Priority: Low. First reported 2013. Status: Not adopted.)

Capacity Imports and Exports

- The MMU recommends that all capacity imports be required to be deliverable to PJM load prior to the relevant delivery year to ensure that they are full substitutes for internal, physical capacity resources. Pseudo ties alone are not adequate to ensure deliverability. (Priority: High. First reported 2016. Status: Not adopted.)

- The MMU recommends that all costs incurred as a result of a pseudo tied unit be borne by the unit itself and included as appropriate in unit offers in the capacity market. (Priority: High. First reported 2016. Status: Not adopted.)

- The MMU recommends clear, explicit and detailed rules that define the conditions under which PJM will and will not recall energy from PJM capacity resources and prohibit new energy exports from PJM capacity resources. The MMU recommends that those rules define the conditions under which PJM will purchase emergency energy while at the same time not recalling energy exports from PJM capacity resources. PJM has modified these rules, but the rules need additional clarification and operational details. (Priority: Low. First reported 2010. Status: Partially adopted.)

Deactivations/Retirements

- The MMU recommends that the notification requirement for deactivations be extended from 90 days prior to the date of deactivation to 12 months prior to the date of deactivation and that PJM and the MMU be provided 60 days rather than 30 days to complete their reliability and market power analyses. (Priority: Low. First reported 2012. Status: Not adopted.)

- The MMU recommends that RMR units recover all and only the incremental costs, including incremental investment costs, required by the RMR service that the unit owner would not have incurred if the unit owner had deactivated its unit as it proposed. Customers should bear no responsibility for paying previously incurred costs, including a return on or of prior investments. (Priority: Low. First reported 2010. Status: Not adopted.)
• The MMU recommends elimination of the cost of service recovery rate in OATT Section 119, and that RMR service should be provided under the deactivation avoidable cost rate in Part V. The MMU also recommends specific improvements to the DACR provisions. (Priority: Medium. First reported 2017. Status: Not adopted.)

Conclusion
The analysis of PJM Capacity Markets begins with market structure, which provides the framework for the actual behavior or conduct of market participants. The analysis examines participant behavior within that market structure. In a competitive market structure, market participants are constrained to behave competitively. The analysis examines market performance, measured by price and the relationship between price and marginal cost, that results from the interaction of market structure and participant behavior. Market power is and will remain endemic to the structure of the PJM Capacity Market. Nonetheless a competitive outcome can be assured by appropriate market power mitigation rules.

The MMU concludes that the 2021/2022 RPM Base Residual Auction results were not competitive as a result of offers above the competitive level by some market participants. The MMU recognizes that these market participants followed the capacity market rules by offering at less than the stated offer cap of Net CONE times B. But Net CONE times B is not a competitive offer when the expected number of performance assessment intervals is zero or a very small number and the non-performance charge rate is defined as Net CONE/30. Under these circumstances, a competitive offer, under the logic defined in PJM’s capacity performance filing, is net ACR. That is the way in which most market participants offered in this and prior capacity performance auctions.

FERC approved PJM tariff defines the offer cap as Net CONE times B, rather than including the full logic supporting the definition of the offer cap under the capacity performance paradigm. If the tariff had defined the offer cap consistent with PJM’s filing in the capacity performance matter, the offer cap would have been net ACR rather than Net CONE times B.

The MMU is required to identify market issues and to report them to the Commission and to market participants. The Commission decides on any action related to the MMU’s findings.

The MMU found serious market structure issues, measured by the three pivotal supplier test results in the PJM Capacity Market in the last BRA and in the first nine months of 2019. Explicit market power mitigation rules in the RPM construct only partially offset the underlying market structure issues in the PJM Capacity Market under RPM. In the 2021/2022 RPM Base Residual Auction, the default offer cap of net CONE times B exceeded the competitive offer for a number of resources. Some seasonal resources were paid additional make whole based on a failure of the market power rules to apply offer capping.

The MMU has identified serious market design issues with RPM and the MMU has made specific recommendations to address those issues. 27 28 29 30 31 32 In 2018 and 2019, the MMU prepared a number of RPM related reports and testimony, shown in Table 5–2. The capacity performance modifications to the RPM construct have significantly improved the capacity market and addressed many of the issues identified by the MMU. The MMU will continue to publish more detailed reports on the CP auctions which include more specific issues and suggestions for improvements.

The PJM markets have worked to provide incentives to entry and to retaining capacity. PJM had excess reserves of more than 11,000 ICAP MW on June 1, 2019, and will have excess reserves of more than 17,000 ICAP MW on June 1, 2020, based on current positions. 33 A majority of capacity investments in

33 The calculated reserve margin for June 1, 2020, does not account for cleared buy bids that have not been used in replacement capacity transactions.
PJM were financed by market sources. Of the 36,859.2 MW of additional capacity that cleared in RPM auctions for the 2007/2008 through 2018/2019 delivery years, 27,306.6 MW (74.1 percent) were based on market funding. Of the 7,171.2 MW of additional capacity that cleared in RPM auctions for the 2019/2020 through 2021/2022 delivery years, 7,014.7 MW (97.8 percent) are based on market funding. Those investments were made based on the assumption that markets would be allowed to work and that inefficient units would exit.

The issue of external subsidies, particularly for economic nuclear power plants, continued to evolve. The subsidies are not part of the PJM market design but nonetheless threaten the foundations of the PJM capacity market as well as the competitiveness of PJM markets overall.

The Ohio subsidy legislation to subsidize both nuclear and coal plants and to eliminate the RPS, the Illinois ZEC legislation to subsidize the Quad Cities nuclear power plant and the requests for additional subsidies, the request in Pennsylvania to subsidize the Three Mile Island and other nuclear power plants, the New Jersey legislation to subsidize the Salem and Hope Creek nuclear power plants, the potential U.S. DOE proposal to subsidize coal and nuclear power plants, and the request by FirstEnergy to the U.S. DOE for subsidies consistent with the DOE Grid Resilience Proposal, all originate from the fact that competitive markets result in the exit of uneconomic and uncompetitive generating units. Regardless of the specific rationales offered by unit owners, the proposed solution for all such generating units has been to provide out of market subsidies in order to retain such units. The proposed solution in all cases ignores the opportunity cost of subsidizing uneconomic units, which is the displacement of new resources and technologies that would otherwise be economic. These subsidies are not accurately characterized as state subsidies. These subsidies were all requested by the owners of specific uneconomic generating units in order to improve the profitability of those specific units. These subsidies were not requested to accomplish broader social goals. Broader social goals can all be met with market-based mechanisms available to all market participants on a competitive basis and without discrimination.

Subsidies are contagious. Competition in the markets could be replaced and is now being replaced by competition to receive subsidies. Similar threats to competitive markets are being discussed by unit owners in other states and the potentially precedent nature of these actions enhances the urgency of creating an effective rule to maintain competitive markets by modifying market rules to address these subsidies. Competition to receive subsidies is now a reality and is accelerating in PJM.

It is essential that any approach to the PJM markets incorporate a consistent view of how the preferred market design is expected to provide competitive results in a sustainable market design over the long run. A sustainable market design means a market design that results in appropriate incentives to competitive market participants to retire units and to invest in new units over time such that reliability is ensured as a result of the functioning of the market. The MMU calls this approach the Sustainable Market Rule (SMR). The SMR is fully consistent with the renewables targets of many states in the PJM footprint. The SMR is also consistent with incorporating economic nuclear power plants in the capacity market.

A sustainable competitive wholesale power market must recognize three salient structural elements: state nonmarket revenues for renewable energy; a significant level of generation resources subject to cost of service regulation; and the structure and performance of the existing market based generation fleet.

Subsidies to specific resources that are uneconomic as a result of competition are an effort to reverse market outcomes with no commitment to a regulatory model and no attempt to mitigate negative impacts on competition. The unit specific subsidy model is inconsistent with the PJM market design and

35 The MMU filed several comments as well as a proposal summary in the Capacity Market Investigation focused on the Sustainable Market Rule (SMR) in Docket Nos. ER18-1314-000, -001, S116-49-000, and S116-178-000 [October 2, 2018; October 31, 2018; November 6, 2018]. MMU filings are located at the Monitoring Analytics website at <http://www.monitoringanalytics.com/filings/2018.shtml>.
Section 5 Capacity

inconsistent with the market paradigm and constitutes a significant threat to both.

The existing FRR approach remains an option for utilities with regulated revenues based on cost of service rates, including both privately and publicly owned (including public power entities and electric cooperatives) utilities. Such regulated utilities have had and continue to have the ability to opt out of the capacity market and provide their own capacity.

Given that states have increasingly aggressive renewable energy targets, a core goal of a competitive market design should be to ensure that the resources required to provide reliability receive appropriate competitive market incentives for entry and for ongoing investment and for exit when uneconomic. A significant level of renewable resources, operating with zero or near zero marginal costs, will result in very low energy prices. Since renewable resources are intermittent, the contribution of renewables to meeting reliability targets must be analyzed carefully to ensure that the capacity value is calculated correctly.

In order to attract and retain adequate resources for the reliable operation of the energy market, revenues from PJM energy, ancillary services and capacity markets must be adequate for those resources. That adequacy requires a capacity market. The capacity market plays the essential role of equilibrating the revenues necessary to incent competitive entry and exit of the resources needed for reliability, with the revenues from the energy market that are directly affected by nonmarket sources.

Price suppression below the competitive level in the capacity market should not be acceptable and is not consistent with a competitive market design. Harmonizing means that the integrity of each paradigm is maintained and respected. Harmonizing permits nonmarket resources to have an unlimited impact on energy markets and energy prices. Harmonizing means designing a capacity market to account for these energy market impacts, clearly limiting the impact of nonmarket revenues on the capacity market and ensuring competitive outcomes in the capacity market and thus in the entire market.

The expected impact of the SMR design on the offers and clearing of renewable resources and nuclear plants would be from zero to insignificant. The competitive offers of renewables, based on the net ACR of current technologies, are likely to clear in the capacity market. The competitive offers of nuclear plants, based on net ACR, are likely to clear in the capacity market.

Cost of service resources have the option of using the existing FRR rules, which would allow regulated utilities to opt out of the capacity market. The expected impact of the SMR design on the offers and clearing of regulated cost of service resources that remained in the capacity market would be from zero to insignificant. The competitive offers of these resources, based on net ACR, are likely to clear in the capacity market.

To the extent that there are shared broader goals related to PJM markets, they should also be addressed, but this can happen with a slightly longer lead time. If a shared goal is to reduce carbon output, a price on carbon is the market based solution. If a shared goal is increased renewables in addition to their carbon attributes, a common approach to RECs would be a market based solution. Fuel diversity has also been mentioned as an issue. Current fuel diversity is higher than ever in PJM. If there is an issue, the real issue is fuel security and not fuel diversity. Significant reliance on specific fuels, including nuclear, coal and gas means that markets are at risk from a significant disruption in any one fuel. If fuel security for gas is a concern, a number of issues should be considered including the reliability of the pipelines, the compatibility of the gas pipeline and the merchant generator business models, the degree to which electric generators have truly firm gas service and the need for a gas RTO/ISO to help ensure reliability.

As a result of the fact that demand side resources have contributed to price suppression in PJM capacity markets, the place of demand side in PJM should be reexamined. There are ways to ensure and enhance the vibrancy of demand side without negatively affecting markets for generation. There are other price formation issues in the capacity market that should also be examined and addressed.
Installed Capacity

On January 1, 2019, RPM installed capacity was 186,496.1 MW (Table 5-3). Over the next nine months, new generation, unit deactivations, facility reratings, plus import and export shifts resulted in RPM installed capacity of 186,502.9 MW on September 30, 2019, an increase of 6.8 MW or 0.0 percent from the January 1 level. The 6.8 MW increase was the result of new or reactivated generation (3,601.7 MW), uprates (467.5 MW), and an increase in imports (0.4 MW), offset by deactivations (3,922.5 MW), derates (138.7 MW) and an increase in exports (1.6 MW).

At the beginning of the new delivery year on June 1, 2019, RPM installed capacity was 187,322.6 MW, an increase of 1,944.6 MW or 1.0 percent from the May 31, 2019, level of 185,378.0 MW.

Table 5-3 Installed capacity (By fuel source): January 1, May 31, June 1, and September 30, 2019

<table>
<thead>
<tr>
<th></th>
<th>01-Jan-19</th>
<th>31-May-19</th>
<th>01-Jun-19</th>
<th>30-Sep-19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td>60,763.4</td>
<td>58,833.6</td>
<td>58,043.9</td>
<td>57,877.0</td>
</tr>
<tr>
<td>Percent</td>
<td>32.6%</td>
<td>31.7%</td>
<td>31.0%</td>
<td>31.0%</td>
</tr>
<tr>
<td>Gas</td>
<td>75,261.2</td>
<td>75,770.8</td>
<td>78,475.8</td>
<td>78,477.3</td>
</tr>
<tr>
<td>Percent</td>
<td>40.4%</td>
<td>40.9%</td>
<td>41.9%</td>
<td>42.1%</td>
</tr>
<tr>
<td>Hydroelectric</td>
<td>8,888.2</td>
<td>8,873.9</td>
<td>8,873.9</td>
<td>8,873.9</td>
</tr>
<tr>
<td>Percent</td>
<td>4.8%</td>
<td>4.8%</td>
<td>4.7%</td>
<td>4.8%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>32,684.5</td>
<td>33,000.7</td>
<td>33,061.7</td>
<td>32,297.9</td>
</tr>
<tr>
<td>Percent</td>
<td>17.5%</td>
<td>17.8%</td>
<td>17.6%</td>
<td>17.3%</td>
</tr>
<tr>
<td>Oil</td>
<td>6,388.2</td>
<td>6,342.2</td>
<td>6,330.2</td>
<td>6,331.6</td>
</tr>
<tr>
<td>Percent</td>
<td>3.4%</td>
<td>3.4%</td>
<td>3.4%</td>
<td>3.4%</td>
</tr>
<tr>
<td>Solar</td>
<td>640.0</td>
<td>686.2</td>
<td>702.6</td>
<td>757.4</td>
</tr>
<tr>
<td>Percent</td>
<td>0.3%</td>
<td>0.4%</td>
<td>0.4%</td>
<td>0.4%</td>
</tr>
<tr>
<td>Solar</td>
<td>712.3</td>
<td>712.3</td>
<td>702.3</td>
<td>695.6</td>
</tr>
<tr>
<td>Percent</td>
<td>0.4%</td>
<td>0.4%</td>
<td>0.4%</td>
<td>0.4%</td>
</tr>
<tr>
<td>Wind</td>
<td>1,158.3</td>
<td>1,158.3</td>
<td>1,192.2</td>
<td>1,192.2</td>
</tr>
<tr>
<td>Percent</td>
<td>0.6%</td>
<td>0.6%</td>
<td>0.6%</td>
<td>0.6%</td>
</tr>
<tr>
<td>Total</td>
<td>186,496.1</td>
<td>185,378.0</td>
<td>187,322.6</td>
<td>186,502.9</td>
</tr>
<tr>
<td>Percent</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Figure 5-1 shows the share of installed capacity by fuel source for the first day of each delivery year, from June 1, 2007, to June 1, 2019, as well as the expected installed capacity for the next two delivery years, based on the results of all auctions held through September 30, 2019. On June 1, 2007, coal comprised 40.7 percent of the installed capacity, reached a maximum of 42.9 percent in 2012, decreased to 31.0 percent on June 1, 2019 and is projected to decrease to 28.2 percent by June 1, 2021. The share of gas increased from 29.1 percent in 2007 to 41.9 percent in 2019 and is projected to increase to 50.3 percent in 2021.

Figure 5-1 Percent of installed capacity (By fuel source): June 1, 2007 through June 1, 2021

36 Percent values shown in Table 5-3 are based on unrounded, underlying data and may differ from calculations based on the rounded values in the tables.

37 Unless otherwise specified, the capacity described in this section is the summer installed capacity rating of all PJM generation capacity resources, as entered into the Capacity Exchange system, regardless of whether the capacity cleared in the RPM auctions.

38 Wind resources accounted for 1,192.2 MW, and solar resources accounted for 757.4 MW of installed capacity in PJM on September 30, 2019. PJM administratively reduces the capabilities of all wind generators to 14.7 percent for wind farms in mountainous terrain and 17.6 percent for wind farms in open terrain, and solar generators to 42.0 percent for ground mounted fixed panel, 40.0 percent for ground mounted tracking panel, and 38.0 percent for other than ground mounted solar arrays, of nameplate capacity when determining the installed capacity because wind and solar resources cannot be assumed to be available on peak and cannot respond to dispatch requests. As data become available, unforced capability of wind and solar resources will be calculated using actual data. There are additional wind and solar resources not reflected in total capacity because they are energy only resources and do not participate in the PJM Capacity Market. See “PJM Manual 21: Rules and Procedures for Determination of Generating Capability,” Appendix B.3 Calculation Procedure, Rev. 14 (Aug. 1, 2019).

39 The reported ICAP MW for May 31, 2019, and June 1, 2019, were revised from the 2019 Quarterly State of the Market Report for PJM: January through June.

40 Due to EFORd values not being finalized for future delivery years, the projected installed capacity is based on cleared unforced capacity (UCAP) MW using the EFORd submitted with the offer.
Table 5-4 shows the RPM installed capacity on January 1, 2019, through September 30, 2019, for the top five generation capacity resource owners, excluding FRR committed MW.

Table 5-4 Installed capacity by parent company: January 1, May 31, June 1, and September 30, 2019

<table>
<thead>
<tr>
<th>Parent Company</th>
<th>01-Jan-19 ICAP (MW)</th>
<th>31-May-19 ICAP (MW)</th>
<th>01-Jun-19 ICAP (MW)</th>
<th>30-Sep-19 ICAP (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exelon Corporation</td>
<td>22,819.1</td>
<td>22,784.9</td>
<td>22,691.5</td>
<td>21,984.0</td>
</tr>
<tr>
<td>Dominion Resources, Inc.</td>
<td>20,388.9</td>
<td>20,180.7</td>
<td>20,143.7</td>
<td>20,198.5</td>
</tr>
<tr>
<td>FirstEnergy Corp.</td>
<td>14,644.0</td>
<td>12,495.3</td>
<td>12,489.3</td>
<td>12,489.3</td>
</tr>
<tr>
<td>Vistra Energy Corp.</td>
<td>12,082.3</td>
<td>12,082.0</td>
<td>12,187.0</td>
<td>12,187.0</td>
</tr>
<tr>
<td>Talen Energy Corporation</td>
<td>10,959.3</td>
<td>10,964.0</td>
<td>10,964.6</td>
<td>10,964.6</td>
</tr>
</tbody>
</table>

Table 5-5 Installed capacity by funding type: January 1, May 31, June 1, and September 30, 2019

<table>
<thead>
<tr>
<th>Funding Type</th>
<th>01-Jan-19 ICAP (MW)</th>
<th>31-May-19 ICAP (MW)</th>
<th>01-Jun-19 ICAP (MW)</th>
<th>30-Sep-19 ICAP (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market</td>
<td>153,676.9</td>
<td>152,777.4</td>
<td>154,892.6</td>
<td>154,018.1</td>
</tr>
<tr>
<td>Nonmarket</td>
<td>32,819.2</td>
<td>32,600.6</td>
<td>32,430.0</td>
<td>32,484.8</td>
</tr>
<tr>
<td>Total</td>
<td>186,496.1</td>
<td>185,378.0</td>
<td>187,322.6</td>
<td>186,502.9</td>
</tr>
</tbody>
</table>

Fuel Diversity

Figure 5-2 shows the fuel diversity index (FDIc) for RPM installed capacity. The FDI is defined as

\[1 - \frac{1}{N} \sum_{i=1}^{N} s_i^2 \]

where \(s_i \) is the percent share of fuel type \(i \).

The minimum possible value for the FDIc is zero, corresponding to all capacity from a single fuel type. The maximum possible value for the FDIc is achieved when each fuel type has an equal share of capacity.

For a capacity mix of eight fuel types, the maximum achievable index is 0.875. The fuel type categories used in the calculation of the FDIc are the eight fuel sources in Table 5-3. The FDIc is stable and does not exhibit any long-term trends. The only significant deviation occurred with the expansion of the PJM footprint on April 1, 2002. PJM expanded with the addition of Allegheny Power System, which added about 12,000 MW of generation. The reduction in the FDIc resulted from an increase in coal capacity resources. A similar but more significant reduction occurred in 2004 with the expansion into the ComEd, AEP, and Dayton Power & Light control zones. The average FDIc for the first nine months of 2019 decreased 0.8 percent from the first nine months of 2018. Figure 5-2 also includes the expected FDIc through June 2021 based on cleared RPM auctions. The expected FDIc is indicated in Figure 5-2 by the dashed orange line.

The FDIc was used to measure the impact of potential retirements of resources that the MMU has identified as being at risk of retirement. There are 16 capacity resources with installed capacity totaling 12,017 MW identified as being at risk of retirement. Generation owners that intend to retire a generator are required by the tariff to notify PJM at least 90 days in advance.

41 The reported ICAP MW for May 31, 2019, and June 1, 2019, were revised from the 2019 Quarterly State of the Market Report for PJM: January through June.

42 Monitoring Analytics developed the FDI to provide an objective metric of fuel diversity. The FDI metric is similar to the HHI used to measure market concentration. The FDIc is calculated separately for energy output and for installed capacity.

43 On April 1, 2002, the PJM Region expanded with the addition of Allegheny Power System under a set of agreements known as "PJM-West." See page 4 in the 2002 State of the Market Report for PJM for additional details.

45 See the 2018 State of the Market Report for PJM, Section 7: Net Revenue, Units at Risk. The list of at risk units has been updated to reflect the subsidies included in Ohio HB 6 which was passed by the Ohio legislature on July 23, 2019 <https://www.legislature.ohio.gov/legislation/legislation-summary?id=GA133-HB-6>.

© 2019 Monitoring Analytics, LLC
of the retirement.46 There are 8,093.7 MW of generation that have a requested retirement date after September 30, 2019.47 Generation owners of three of the at risk capacity resources have provided notice of their intent to deactivate the generators. The dashed green line in Figure 5-2 shows the FDI\textsubscript{c} calculated assuming that the capacity that cleared in an RPM auction from the at risk resources and other resources with deactivation notices is replaced by gas generation.48 The FDI, under these assumptions, would decrease by 1.9 percent on average from the expected FDI\textsubscript{c} for the period October 1, 2019, through June 1, 2021.

Figure 5-2 Fuel Diversity Index for installed capacity: January 1, 2002 through June 1, 2021

RPM Capacity Market

The RPM Capacity Market, implemented June 1, 2007, is a forward-looking, annual, locational market, with a must-offer requirement for Existing Generation Capacity Resources and mandatory participation by load, with performance incentives, that includes clear market power mitigation rules and that permits the direct participation of demand-side resources.

Annual base auctions are held in May for delivery years that are three years in the future. Effective January 31, 2010, First, Second, and Third Incremental Auctions are conducted 20, 10, and three months prior to the delivery year.49 In the first nine months of 2019, the 2019/2020 RPM Third Incremental Auction, the 2020/2021 RPM Second Incremental Auction, and the 2021/2022 RPM First Incremental Auction were conducted.50

Market Structure

Supply

Table 5-6 shows generation capacity changes since the implementation of the Reliability Pricing Model through the 2018/2019 Delivery Year. The 21,718.6 MW increase was the result of new generation capacity resources (29,002.4 MW), reactivated generation capacity resources (1,349.5 MW), uprates (6,507.3 MW), integration of external zones (21,802.5 MW), a net increase in capacity imports (183.0 MW), a net decrease in capacity exports (2,306.5 MW), offset by deactivations (36,104.0 MW) and derates (3,328.6 MW).

Table 5-7 shows the calculated RPM reserve margin and reserve in excess of the defined installed reserve margin (IRM) for June 1, 2016, through June 1, 2021, and accounts for cleared capacity, replacement capacity, and deficiency MW for all auctions held and the most recent peak load forecast for each delivery year. The completion of the replacement process using cleared buy bids from RPM incremental auctions includes two transactions. The first step is for the entity to submit and clear a buy bid in an RPM incremental auction.

46 See OATT Part V § 113.1.

48 For this analysis, resources for which PJM has received deactivation notifications were replaced with gas capacity beginning on the projected retirement date listed in the deactivation data. At risk resources that have not notified PJM regarding deactivation were replaced with gas capacity beginning on October 1, 2019.

49 See PJM Interconnection, LLC., Letter Order in Docket No. ER10-366-000 (January 22, 2010).

50 FERC granted PJM’s request for waiver of its Open Access Transmission Tariff to delay the 2022/2023 RPM Base Residual Auction from May 2019 to August 2019. See 164 FERC ¶ 61,153 (2018). FERC subsequently denied PJM’s motion seeking clarification of the June 29, 2018, Order (163 FERC ¶ 61,236) and directed PJM not to run the 2022/2023 BRA in August 2019. See 168 FERC ¶ 61,051 (2019).
The next step is for the entity to complete a separate replacement transaction using the cleared buy bid capacity. Without an approved early replacement transaction requested for defined physical reasons, replacement capacity transactions can be completed only after the EFORds for the delivery year are finalized, on November 30 in the year prior to the delivery year, but before the start of the delivery day. The calculated reserve margins for June 1, 2020, and June 1, 2021, do not account for cleared buy bids that have not been used in replacement capacity transactions. The projected reserve margins for June 1, 2020, and June 1, 2021, account for projected replacement capacity using cleared buy bids by applying the rate at which historical buy bids have been used.

Future Changes in Generation Capacity

As shown in Table 5-6, for the period from the introduction of the RPM capacity market design in the 2007/2008 Delivery Year through the 2018/2019 Delivery Year, internal installed capacity decreased by 2,573.4 MW after accounting for new capacity resources, reactivations, and uprates (36,859.2 MW) and capacity deactivations and derates (39,432.6 MW).

For the current and future delivery years (2019/2020 through 2021/2022), new generation capacity is defined as capacity that cleared an RPM auction for the first time in the specified DY. Based on expected completion rates of cleared new generation capacity (6,055.6 MW) and pending deactivations (5,977.8 MW), PJM capacity is expected to increase by 77.8 MW for the 2019/2020 through 2021/2022 Delivery Years.

Table 5-6 Generation capacity changes: 2007/2008 through 2018/2019

<table>
<thead>
<tr>
<th></th>
<th>New</th>
<th>Reactivations</th>
<th>Uprates</th>
<th>Integration</th>
<th>Net Change in Capacity</th>
<th>Imports</th>
<th>Exports</th>
<th>Deactivations</th>
<th>Derates</th>
<th>Net Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007/2008</td>
<td>45.0</td>
<td>0.0</td>
<td>691.5</td>
<td>0.0</td>
<td>0.0</td>
<td>70.0</td>
<td>15.3</td>
<td>380.0</td>
<td>417.0</td>
<td>(5.8)</td>
</tr>
<tr>
<td>2008/2009</td>
<td>815.4</td>
<td>238.3</td>
<td>987.0</td>
<td>0.0</td>
<td>473.0</td>
<td>(9.0)</td>
<td>609.5</td>
<td>421.0</td>
<td>1,493.1</td>
<td></td>
</tr>
<tr>
<td>2009/2010</td>
<td>406.5</td>
<td>0.0</td>
<td>789.0</td>
<td>0.0</td>
<td>229.0</td>
<td>(1,402.2)</td>
<td>108.4</td>
<td>464.3</td>
<td>2,254.0</td>
<td></td>
</tr>
<tr>
<td>2010/2011</td>
<td>153.4</td>
<td>13.0</td>
<td>339.6</td>
<td>0.0</td>
<td>137.0</td>
<td>367.7</td>
<td>840.6</td>
<td>223.5</td>
<td>(788.8)</td>
<td></td>
</tr>
<tr>
<td>2011/2012</td>
<td>3,096.4</td>
<td>354.5</td>
<td>507.9</td>
<td>16,889.5</td>
<td>(1,183.3)</td>
<td>(1,690.3)</td>
<td>2,542.0</td>
<td>176.2</td>
<td>18,637.1</td>
<td></td>
</tr>
<tr>
<td>2012/2013</td>
<td>1,784.6</td>
<td>34.0</td>
<td>528.1</td>
<td>47.0</td>
<td>342.4</td>
<td>95.0</td>
<td>5,536.0</td>
<td>317.8</td>
<td>(3,212.7)</td>
<td></td>
</tr>
<tr>
<td>2013/2014</td>
<td>198.4</td>
<td>58.0</td>
<td>372.8</td>
<td>2,746.0</td>
<td>934.3</td>
<td>17.9</td>
<td>2,786.9</td>
<td>288.3</td>
<td>1,216.4</td>
<td></td>
</tr>
<tr>
<td>2014/2015</td>
<td>2,276.8</td>
<td>20.7</td>
<td>530.2</td>
<td>0.0</td>
<td>2,335.7</td>
<td>177.3</td>
<td>4,915.6</td>
<td>360.3</td>
<td>(289.8)</td>
<td></td>
</tr>
<tr>
<td>2015/2016</td>
<td>4,291.8</td>
<td>90.0</td>
<td>449.0</td>
<td>0.0</td>
<td>511.4</td>
<td>(117.8)</td>
<td>8,338.2</td>
<td>215.8</td>
<td>(3,094.0)</td>
<td></td>
</tr>
<tr>
<td>2016/2017</td>
<td>3,679.3</td>
<td>532.0</td>
<td>419.2</td>
<td>0.0</td>
<td>575.6</td>
<td>722.9</td>
<td>659.4</td>
<td>206.7</td>
<td>3,617.1</td>
<td></td>
</tr>
<tr>
<td>2017/2018</td>
<td>4,127.3</td>
<td>5.0</td>
<td>562.1</td>
<td>0.0</td>
<td>(1,025.1)</td>
<td>(695.1)</td>
<td>2,657.4</td>
<td>148.5</td>
<td>1,558.5</td>
<td></td>
</tr>
<tr>
<td>2018/2019</td>
<td>8,127.5</td>
<td>4.0</td>
<td>330.9</td>
<td>2,120.0</td>
<td>(3,217.0)</td>
<td>217.7</td>
<td>6,730.0</td>
<td>89.2</td>
<td>333.5</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>29,002.4</td>
<td>1,349.5</td>
<td>6,607.3</td>
<td>21,892.5</td>
<td>183.0</td>
<td>(2,306.5)</td>
<td>36,104.0</td>
<td>3,328.6</td>
<td>21,718.6</td>
<td></td>
</tr>
</tbody>
</table>

52 The calculation of capacity changes were revised from the 2019 Quarterly State of the Market Report for PJM: January through June. The capacity changes in this report are calculated based on June 1 through May 31. The capacity changes were previously calculated based on June 2 through June 1.
Table 5-7 RPM reserve margin: June 1, 2016, to June 1, 2021

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01-Jun-16</td>
<td>160,883.3</td>
<td>152,356.6</td>
<td>12,511.6</td>
<td>0.0</td>
<td>139,845.0</td>
<td>16.4%</td>
<td>5.91%</td>
<td>170,988.7</td>
<td>22.3%</td>
<td>5.9%</td>
<td>8,209.2</td>
</tr>
<tr>
<td>01-Jun-17</td>
<td>163,872.0</td>
<td>153,230.1</td>
<td>12,837.5</td>
<td>0.0</td>
<td>140,392.6</td>
<td>16.0%</td>
<td>5.94%</td>
<td>174,220.7</td>
<td>24.1%</td>
<td>7.5%</td>
<td>10,522.9</td>
</tr>
<tr>
<td>01-Jun-18</td>
<td>161,242.6</td>
<td>152,407.9</td>
<td>12,732.9</td>
<td>0.0</td>
<td>139,675.0</td>
<td>16.1%</td>
<td>6.03%</td>
<td>171,662.5</td>
<td>23.1%</td>
<td>6.8%</td>
<td>9,499.8</td>
</tr>
<tr>
<td>01-Jun-19</td>
<td>162,276.1</td>
<td>151,643.5</td>
<td>12,284.2</td>
<td>0.0</td>
<td>139,368.3</td>
<td>16.0%</td>
<td>6.08%</td>
<td>172,781.2</td>
<td>24.0%</td>
<td>8.0%</td>
<td>11,244.4</td>
</tr>
<tr>
<td>01-Jun-20</td>
<td>167,273.9</td>
<td>151,155.1</td>
<td>11,930.9</td>
<td>558.0</td>
<td>138,666.2</td>
<td>15.9%</td>
<td>6.04%</td>
<td>178,026.7</td>
<td>28.4%</td>
<td>12.5%</td>
<td>17,312.6</td>
</tr>
<tr>
<td>01-Jun-21</td>
<td>162,632.9</td>
<td>151,832.3</td>
<td>11,982.6</td>
<td>510.0</td>
<td>139,339.7</td>
<td>15.8%</td>
<td>6.01%</td>
<td>173,032.1</td>
<td>24.2%</td>
<td>8.4%</td>
<td>11,676.8</td>
</tr>
</tbody>
</table>

Sources of Funding

Developers use a variety of sources to fund their projects, including Power Purchase Agreements (PPA), cost of service rates, and private funds (from internal sources or private lenders and investors). PPAs can be used for a variety of purposes and the use of a PPA does not imply a specific source of funding.

New and reactivated generation capacity from the 2007/2008 DY through the 2018/2019 DY totaled 30,351.9 MW (82.3 percent of all additions), with 22,277.9 MW from market funding and 8,074.0 MW from nonmarket funding. Uprates to existing generation capacity from the 2007/2008 DY through the 2018/2019 DY totaled 6,507.3 MW (17.7 percent of all additions), with 5,028.7 MW from market funding and 1,478.6 MW from nonmarket funding. In summary, of the 36,859.2 MW of additional capacity from new, reactivated, and uprated generation that cleared in RPM auctions for the 2007/2008 through 2018/2019 delivery years, 27,306.6 MW (74.1 percent) were based on market funding.

Of the 7,171.2 MW of the additional generation capacity (new resources, reactivated resources, and uprates) that cleared in RPM auctions for the 2019/2020 through 2021/2022 delivery years, 4,418.3 MW are not yet in service. Of those 4,418.3 MW that have not yet gone into service, 4,329.9 MW have market funding and 88.4 MW have nonmarket funding. Applying the historical completion rates, 74.8 percent of all the projects in development are expected to go into service (3,236.6 MW of the 4,329.9 MW of market funded projects; 66.1 MW of the 88.4 MW of nonmarket funded projects). Together, 3,302.7 MW of the 4,418.3 MW of new generation capacity that cleared MW in RPM and are not yet in service are expected to go into service through the 2021/2022 Delivery Year.

Of the 2,752.9 MW of the additional generation capacity that cleared in RPM auctions for the 2019/2020 through 2021/2022 delivery years and are already in service, 2,684.8 MW (97.5 percent) are based on market funding and 68.1 MW (2.5 percent) are based on nonmarket funding. In summary, 7,014.7 MW (97.8 percent) of the additional generation capacity (2,684.8 MW in service and 4,329.9 MW not yet in service) that cleared in RPM auctions for the 2019/2020 through 2021/2022 delivery years are based on market funding. Capacity additions based on nonmarket funding are 156.5 MW (2.2 percent) of proposed generation that cleared at least one RPM auction for the 2019/2020 through 2021/2022 delivery years.

53 The calculated reserve margins in this table do not include EE on the supply side or the EE add back on the demand side. The EE excluded from the supply side for this calculation includes annual EE and summer EE. This is how PJM calculates the reserve margin.
54 These reserve margin calculations do not consider Fixed Resource Requirement (FRR) load.
Demand

The MMU analyzed market sectors in the PJM Capacity Market to determine how they met their load obligations. The PJM Capacity Market was divided into the following sectors:

- **PJM EDC.** EDCs with a franchise service territory within the PJM footprint. This sector includes traditional utilities, electric cooperatives, municipalities and power agencies.
- **PJM EDC Generating Affiliate.** Affiliate companies of PJM EDCs that own generating resources.
- **PJM EDC Marketing Affiliate.** Affiliate companies of PJM EDCs that sell power and have load obligations in PJM, but do not own generating resources.
- **Non-PJM EDC.** EDCs with franchise service territories outside the PJM footprint.
- **Non-PJM EDC Generating Affiliate.** Affiliate companies of non-PJM EDCs that own generating resources.
- **Non-PJM EDC Marketing Affiliate.** Affiliate companies of non-PJM EDCs that sell power and have load obligations in PJM, but do not own generating resources.
- **Non-EDC Generating Affiliate.** Affiliate companies of non-EDCs that own generating resources.
- **Non-EDC Marketing Affiliate.** Affiliate companies of non-EDCs that sell power and have load obligations in PJM, but do not own generating resources.

On June 1, 2019, PJM EDCs and their affiliates maintained a large market share of load obligations under RPM, together totaling 60.1 percent (Table 5-8), up from 60.0 percent on June 1, 2018. The combined market share of LSEs not affiliated with any EDC and non-PJM EDC affiliates was 39.9 percent, down from 40.0 percent on June 1, 2018. The share of capacity market load obligation fulfilled by PJM EDCs and their affiliates, and LSEs not affiliated with any EDC and non-PJM EDC affiliates from June 1, 2007, to June 1, 2019, is shown in Figure 5-3. PJM EDCs’ and their affiliates’ share of load obligation has decreased from 77.5 percent on June 1, 2007, to 60.1 percent on June 1, 2019. The share of load obligation held by LSEs not affiliated with any EDC and non-PJM EDC affiliates increased from 22.5 percent on June 1, 2007, to 39.9 percent on June 1, 2019. Prior to the 2012/2013 Delivery Year, obligation was defined as cleared and make whole MW in the Base Residual Auction and the Second Incremental Auction plus ILR forecast obligations. Effective with the 2012/2013 Delivery Year, obligation is defined as the sum of the unforced capacity obligations satisfied through all RPM auctions for the delivery year.

Table 5-8 Capacity market load obligation served: June 1, 2019

<table>
<thead>
<tr>
<th></th>
<th>Obligation (MW)</th>
<th>Percent of total obligation 2018</th>
<th>Obligation (MW)</th>
<th>Percent of total obligation 2019</th>
<th>Change (MW)</th>
<th>Percent of total obligation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PJM EDCs and Affiliates</td>
<td>113,202.4</td>
<td>60.0%</td>
<td>113,416.3</td>
<td>60.1%</td>
<td>213.8</td>
<td>0.1%</td>
</tr>
<tr>
<td>LSEs not affiliated with any EDC + non EDC Affiliates</td>
<td>75,585.7</td>
<td>40.0%</td>
<td>75,445.0</td>
<td>39.9%</td>
<td>-140.7</td>
<td>(0.1%)</td>
</tr>
<tr>
<td>Total</td>
<td>188,788.1</td>
<td>100.0%</td>
<td>188,861.3</td>
<td>100.0%</td>
<td>73.2</td>
<td>0.0%</td>
</tr>
</tbody>
</table>
Capacity Transfer Rights (CTRs)

Capacity Transfer Rights (CTRs) are used to return capacity market congestion revenues to load. Load pays for the transmission system through firm transmission charges and pays for congestion. Capacity market congestion revenues are the difference between the total dollars paid by load for capacity and the total dollars received by capacity market sellers. The MW of CTRs available for allocation to LSEs in an LDA is equal to the Unforced Capacity imported into the LDA, based on the results of the Base Residual Auction and Incremental Auctions, less any MW of CETL paid for directly by market participants in the form of Qualifying Transmission Upgrades (QTUs) cleared in an RPM Auction and Incremental Capacity Transfer Rights (ICTRs). There are two types of ICRs, those allocated to a New Service Customer obligated to fund a transmission facility or upgrade and those associated with Incremental Rights-Eligible Required Transmission Enhancements.

For LDAs in which the RPM auctions for a delivery year resulted in a positive average weighted Locational Price Adder, an LSE with CTRs corresponding to the LDA is entitled to a payment or charge equal to the Locational Price Adder multiplied by the MW of the LSEs’ CTRs.

In the 2021/2022 RPM Base Residual Auction, EMAAC had 4,352.6 MW of CTRs with a total value of $40,877,295, PSEG had 4,990.5 MW of CTRs with a total value of $70,238,159, ATSI had 6,402.8 MW of CTRs with a total value of $73,219,252, ComEd had 1,527.9 MW of CTRs with a total value of $30,978,820, and BGE had 5,125.6 MW of CTRs with a total value of $112,812,971.56

EMAA had 40.0 MW of customer funded ICRs with a total value of $375,658, PSEG had 41.0 MW of customer funded ICRs with a total value of $577,050, BGE had 65.7 MW of customer funded ICRs with a total value of $1,446,024, and ComEd had 1,097.0 MW of customer funded ICRs with a total value of $22,242,498.

EMAA had 948.0 MW of ICRs due to Incremental Rights-Eligible Required Transmission Enhancements with a value of $8,903,095. PSEG had 499.4 MW of ICRs due to Incremental Rights-Eligible Required Transmission Enhancements with a value of $7,028,755. BGE had 306.0 MW of ICRs due to Incremental Rights-Eligible Required Transmission Enhancements with a value of $6,734,907.

Market Concentration

Auction Market Structure

As shown in Table 5-9, in the 2020/2021 RPM Second Incremental Auction, all participants in the total PJM market as well as the LDA RPM markets failed

56 The values of capacity transfer rights values were revised from the values reported in previous 2018 and 2019 state of the market reports.
the three pivotal supplier (TPS) test.57 In the 2021/2022 RPM First Incremental Auction, two participants in the EMAAC LDA market passed the TPS test. Offer caps were applied to all sell offers for resources which were subject to mitigation when the capacity market seller did not pass the test, the submitted sell offer exceeded the defined offer cap, and the submitted sell offer, absent mitigation, increased the market clearing price.58,59,60

In applying the market structure test, the relevant supply for the RTO market includes all supply offered at less than or equal to 150 percent of the RTO cost-based clearing price. The relevant supply for the constrained LDA markets includes the incremental supply inside the constrained LDAs which was offered at a price higher than the unconstrained clearing price for the parent LDA market and less than or equal to 150 percent of the cost-based clearing price for the constrained LDA. The relevant demand consists of the MW needed inside the LDA to relieve the constraint.

Table 5-9 presents the results of the TPS test. A generation owner or owners are pivotal if the capacity of the owners’ generation facilities is needed to meet the demand for capacity. The results of the TPS are measured by the residual supply index (RSIX). The RSIX is a general measure that can be used with any number of pivotal suppliers. The subscript denotes the number of pivotal suppliers included in the test. If the RSIX is less than or equal to 1.0, the supply owned by the specific generation owner, or owners, is needed to meet market demand and the generation owners are pivotal suppliers with a significant ability to influence market prices. If the RSIX is greater than 1.0, the supply of the specific generation owner or owners is not needed to meet market demand and those generation owners have a reduced ability to unilaterally influence market price.

57 The market definition used for the TPS test includes all offers with costs less than or equal to 1.50 times the clearing price. See MMU Technical Reference for PJM Markets, at “Three Pivotal Supplier Test” for additional discussion.

58 See OATT Attachment DD § 6.5.

59 Prior to November 1, 2009, existing DR and EE resources were subject to market power mitigation in RPM Auctions. See 129 FERC ¶ 61,081 at P 30 (2009).

60 Effective January 31, 2011, the RPM rules related to market power mitigation were changed, including revising the definition for planned generation capacity resource and creating a new definition for existing generation capacity resource for purposes of the must-offer requirement and market power mitigation, and treating a proposed increase in the capability of a generation capacity resource the same in terms of mitigation as a planned generation capacity resource. See 134 FERC ¶ 61,065 (2011).
<table>
<thead>
<tr>
<th>RPM Markets</th>
<th>RSI_{1,6}</th>
<th>RSI_{1}</th>
<th>Total Participants</th>
<th>Failed RSI_{1} Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018/2019 Base Residual Auction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTO</td>
<td>0.81</td>
<td>0.65</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>EMAAC</td>
<td>0.59</td>
<td>0.16</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>ComEd</td>
<td>1.11</td>
<td>0.02</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2018/2019 First Incremental Auction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTO</td>
<td>0.51</td>
<td>0.23</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>EMAAC</td>
<td>-0.00</td>
<td>0.00</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>ComEd</td>
<td>0.00</td>
<td>0.00</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2018/2019 Second Incremental Auction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTO</td>
<td>0.64</td>
<td>0.87</td>
<td>44</td>
<td>9</td>
</tr>
<tr>
<td>EMAAC</td>
<td>0.25</td>
<td>0.06</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>2018/2019 Third Incremental Auction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTO</td>
<td>0.88</td>
<td>0.65</td>
<td>71</td>
<td>71</td>
</tr>
<tr>
<td>EMAAC</td>
<td>0.00</td>
<td>0.00</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2019/2020 Base Residual Auction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTO</td>
<td>0.81</td>
<td>0.66</td>
<td>131</td>
<td>131</td>
</tr>
<tr>
<td>EMAAC</td>
<td>0.79</td>
<td>0.23</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>ComEd</td>
<td>0.74</td>
<td>0.12</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>BGE</td>
<td>0.00</td>
<td>0.00</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2019/2020 First Incremental Auction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTO</td>
<td>0.63</td>
<td>0.50</td>
<td>53</td>
<td>53</td>
</tr>
<tr>
<td>EMAAC</td>
<td>0.00</td>
<td>0.00</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>2019/2020 Second Incremental Auction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTO</td>
<td>0.61</td>
<td>0.48</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>BGE</td>
<td>0.00</td>
<td>0.00</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2019/2020 Third Incremental Auction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTO</td>
<td>0.70</td>
<td>0.59</td>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td>2020/2021 Base Residual Auction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTO</td>
<td>0.81</td>
<td>0.69</td>
<td>119</td>
<td>119</td>
</tr>
<tr>
<td>MAAC</td>
<td>0.67</td>
<td>0.77</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>EMAAC</td>
<td>0.45</td>
<td>0.18</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>ComEd</td>
<td>0.47</td>
<td>0.20</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>DEOK</td>
<td>0.00</td>
<td>0.00</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

61 The RSI shown is the lowest RSI in the market.
Locational Deliverability Areas (LDAs)

Under the PJM Tariff, PJM determines, in advance of each BRA, whether defined Locational Deliverability Areas (LDAs) will be modeled in the auction.62

Locational Deliverability Areas are shown in Figure 5-4, Figure 5-5 and Figure 5-6.

Figure 5-4 Map of locational deliverability areas

Figure 5-5 Map of RPM EMAAC subzonal LDAs

Figure 5-6 Map of RPM ATSI subzonal LDA

Imports and Exports
Units external to the metered boundaries of PJM can qualify as PJM capacity resources if they meet the requirements to be capacity resources. Generators on the PJM system that do not have a commitment to serve PJM loads in the given delivery year as a result of RPM auctions, FRR capacity plans, locational UCAP transactions, and/or are not designated as a replacement resource, are eligible to export their capacity from PJM.63

The PJM market rules should not create inappropriate barriers to either the import or export of capacity. The market rules in other balancing authorities should also not create inappropriate barriers to the import or export of capacity. The PJM market rules should ensure that the definition of capacity is enforced including physical deliverability, recallability and the obligation to make competitive offers into the PJM Day-Ahead Energy Market. Physical deliverability can only be assured by requiring that all imports are deliverable to PJM load to ensure that they are full substitutes for internal capacity resources. Selling capacity into the PJM Capacity Market but making energy offers daily of $999 per MWh would not fulfill the requirements of a capacity resource to make a competitive offer, but would constitute economic withholding. This is one of the reasons that the rules governing the obligation to make a competitive offer in the Day-Ahead Energy Market should be clarified for both internal and external resources.

For the 2017/2018 through the 2019/2020 Delivery Years, Capacity Import Limits (CILs) are established for each of the five external source zones and the overall PJM region to account for the risk that external generation resources may not be able to deliver energy during the relevant delivery year due to the curtailment of firm transmission by third parties.64 Capacity Market Sellers may request an exception to the CIL for an external generation resource by committing that the resource will be pseudo tied prior to the start of the relevant delivery year, by demonstrating that it has long-term firm transmission service confirmed on the complete transmission path from the resource to PJM, and by agreeing to be subject to the same RPM must offer requirement as internal PJM generation resources.

Effective June 9, 2015, an external generation capacity resource must obtain an exception to the CILs to be eligible to offer as a Capacity Performance Resource, which means that effective with the 2020/2021 Delivery Year, CILs are no longer defined as an RPM parameter.65

Effective May 9, 2017, enhanced pseudo tie requirements for external generation capacity resources were implemented, including a transition period with deliverability requirements for existing pseudo tie resources that have previously cleared an RPM auction. The rule changes include: defining coordination with other Balancing Authorities when conducting pseudo tie studies; establishing an electrical distance requirement; establishing a market-to-market flowgate test to establish limits on the number of coordinated flowgates PJM must add in order to accommodate a new pseudo-tie; a model consistency requirement; the requirement for the capacity market seller to provide written acknowledgement from the external Balancing Authority Areas that such Pseudo-Tie does not require tagging and that firm allocations associated with any coordinated flowgates applicable to the external Generation Capacity Resource under any agreed congestion management process then in effect between PJM and such Balancing Authority Area will be allocated to PJM; the requirement for the capacity market seller to obtain long-term firm point to point transmission service for transmission outside PJM with rollover rights and to obtain network external designated transmission service for transmission within PJM; establishing an operationally deliverable standard; and modifying the nonperformance penalty definition for external generation capacity resources to assess performance at sub-regional transmission organization granularity.

As shown in Table 5-10, of the 4,470.4 MW of imports offered in the 2021/2022 RPM Base Residual Auction, 4,051.8 MW cleared. Of the cleared imports, 1,909.9 MW (47.1 percent) were from MISO.

63 OATT Attachment DD § 5.6.6(b).
64 147 FERC ¶ 61,060 (2014).
65 151 FERC ¶ 61,208 (2015).
Table 5-10 RPM imports: 2007/2008 through 2021/2022 RPM Base Residual Auctions

<table>
<thead>
<tr>
<th>Base Residual Auction</th>
<th>UCAP (MW)</th>
<th>MISO</th>
<th>Non-MISO</th>
<th>Total Imports</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Offered</td>
<td>Cleared</td>
<td>Offered</td>
<td>Cleared</td>
</tr>
<tr>
<td>2007/2008</td>
<td>1,073.0</td>
<td>1,072.9</td>
<td>547.9</td>
<td>547.9</td>
</tr>
<tr>
<td>2008/2009</td>
<td>1,149.4</td>
<td>1,109.0</td>
<td>517.6</td>
<td>516.8</td>
</tr>
<tr>
<td>2009/2010</td>
<td>1,169.2</td>
<td>1,157.0</td>
<td>518.8</td>
<td>518.1</td>
</tr>
<tr>
<td>2010/2011</td>
<td>1,194.2</td>
<td>1,186.6</td>
<td>539.8</td>
<td>539.5</td>
</tr>
<tr>
<td>2011/2012</td>
<td>1,862.7</td>
<td>1,198.6</td>
<td>3,560.0</td>
<td>3,557.5</td>
</tr>
<tr>
<td>2012/2013</td>
<td>1,415.9</td>
<td>1,298.8</td>
<td>1,036.7</td>
<td>1,036.7</td>
</tr>
<tr>
<td>2013/2014</td>
<td>1,895.1</td>
<td>1,895.1</td>
<td>1,358.9</td>
<td>1,358.9</td>
</tr>
<tr>
<td>2014/2015</td>
<td>1,067.7</td>
<td>1,067.7</td>
<td>1,948.8</td>
<td>1,948.8</td>
</tr>
<tr>
<td>2015/2016</td>
<td>1,538.7</td>
<td>1,538.7</td>
<td>2,396.6</td>
<td>2,396.6</td>
</tr>
<tr>
<td>2016/2017</td>
<td>4,723.1</td>
<td>4,723.1</td>
<td>2,770.6</td>
<td>2,759.6</td>
</tr>
<tr>
<td>2017/2018</td>
<td>2,624.3</td>
<td>2,624.3</td>
<td>2,320.4</td>
<td>1,901.2</td>
</tr>
<tr>
<td>2018/2019</td>
<td>2,879.1</td>
<td>2,509.1</td>
<td>2,256.7</td>
<td>2,178.8</td>
</tr>
<tr>
<td>2019/2020</td>
<td>2,067.3</td>
<td>1,826.6</td>
<td>2,276.1</td>
<td>2,047.3</td>
</tr>
<tr>
<td>2020/2021</td>
<td>2,511.8</td>
<td>1,671.2</td>
<td>2,450.0</td>
<td>2,326.0</td>
</tr>
<tr>
<td>2021/2022</td>
<td>2,308.4</td>
<td>1,909.9</td>
<td>2,162.0</td>
<td>2,141.9</td>
</tr>
</tbody>
</table>
Demand Resources

As shown in Table 5-11, Table 5-12, and Table 5-13, capacity in the RPM load management programs was 11,042.8 MW for June 1, 2019, as a result of cleared capacity for demand resources and energy efficiency resources in RPM auctions for the 2019/2020 Delivery Year (13,231.6 MW) less replacement capacity (2,188.8 MW).

Table 5-11 RPM load management statistics by LDA: June 1, 2017 to June 1, 2021

<table>
<thead>
<tr>
<th>UCAP (MW)</th>
<th>RTO</th>
<th>MAAC</th>
<th>EMAAC</th>
<th>SWMAAC</th>
<th>DPL</th>
<th>PSEG</th>
<th>South</th>
<th>PSEG</th>
<th>North</th>
<th>Pepco</th>
<th>ATSI</th>
<th>Cleveland</th>
<th>ComEd</th>
<th>BGE</th>
<th>PPL</th>
<th>DAY</th>
<th>DEOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>DR cleared</td>
<td>11,870.7</td>
<td>4,584.5</td>
<td>1,630.9</td>
<td>1,464.1</td>
<td>86.3</td>
<td>402.8</td>
<td>157.1</td>
<td>658.3</td>
<td>1,256.0</td>
<td>323.5</td>
<td>1,602.9</td>
<td>805.8</td>
<td>811.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE cleared</td>
<td>1,922.3</td>
<td>547.7</td>
<td>180.0</td>
<td>291.5</td>
<td>6.6</td>
<td>55.2</td>
<td>18.5</td>
<td>155.4</td>
<td>192.3</td>
<td>41.4</td>
<td>747.6</td>
<td>136.1</td>
<td>43.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DR net replacements</td>
<td>(3,870.8)</td>
<td>(1,461.6)</td>
<td>(555.7)</td>
<td>(344.8)</td>
<td>(39.5)</td>
<td>(107.9)</td>
<td>(30.6)</td>
<td>(136.5)</td>
<td>(457.2)</td>
<td>(163.1)</td>
<td>(279.2)</td>
<td>(208.3)</td>
<td>(298.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE net replacements</td>
<td>195.6</td>
<td>145.8</td>
<td>20.6</td>
<td>98.3</td>
<td>(0.4)</td>
<td>4.4</td>
<td>2.6</td>
<td>26.2</td>
<td>(41.9)</td>
<td>(11.7)</td>
<td>10.3</td>
<td>72.1</td>
<td>(9.9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPM load management</td>
<td>10,117.8</td>
<td>3,816.4</td>
<td>1,275.8</td>
<td>1,509.1</td>
<td>52.0</td>
<td>354.5</td>
<td>147.6</td>
<td>703.4</td>
<td>949.2</td>
<td>190.1</td>
<td>2,081.6</td>
<td>805.7</td>
<td>546.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

66 See OATT Attachment DD § 8.4. The reported DR cleared MW may reflect reductions in the level of committed MW due to relief from Capacity Resource Deficiency Charges.

67 Pursuant to OA § 15.1.6(c), PJM Settlement shall attempt to close out and liquidate forward capacity commitments for PJM Members that are declared in collateral default. The replacement transactions reported for the 2014/2015 Delivery Year include transactions associated with RTP Controls, Inc., which was declared in collateral default on March 9, 2012.

68 See OATT Attachment DD § 5.14C. The reported DR cleared MW for the 2015/2016 and 2016/2017 Delivery Years reflect reductions in the level of committed MW due to the Demand Response Operational Resource Flexibility Transition Provision.

Table 5-12 RPM commitments, replacements, and registrations for demand resources: June 1, 2007 to June 1, 2021

<table>
<thead>
<tr>
<th>UCAP (MW)</th>
<th>Registered DR</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPM Cleared</td>
<td>Adjustments to Cleared</td>
</tr>
<tr>
<td>01-Jun-07</td>
<td>127.6</td>
</tr>
<tr>
<td>01-Jun-08</td>
<td>559.4</td>
</tr>
<tr>
<td>01-Jun-09</td>
<td>892.9</td>
</tr>
<tr>
<td>01-Jun-10</td>
<td>962.9</td>
</tr>
<tr>
<td>01-Jun-11</td>
<td>1,826.6</td>
</tr>
<tr>
<td>01-Jun-12</td>
<td>8,752.6</td>
</tr>
<tr>
<td>01-Jun-13</td>
<td>10,779.6</td>
</tr>
<tr>
<td>01-Jun-14</td>
<td>14,943.0</td>
</tr>
<tr>
<td>01-Jun-15</td>
<td>15,774.8</td>
</tr>
<tr>
<td>01-Jun-16</td>
<td>13,284.7</td>
</tr>
<tr>
<td>01-Jun-17</td>
<td>11,870.7</td>
</tr>
<tr>
<td>01-Jun-18</td>
<td>11,435.4</td>
</tr>
<tr>
<td>01-Jun-19</td>
<td>10,703.1</td>
</tr>
<tr>
<td>01-Jun-20</td>
<td>9,231.7</td>
</tr>
<tr>
<td>01-Jun-21</td>
<td>11,415.5</td>
</tr>
</tbody>
</table>

70 See OATT Attachment D0 § 8.4. The reported DR reductions to cleared MW include reductions in the level of committed MW due to relief from Capacity Resource Deficiency Charges.
71 See OATT Attachment D0 § 5.14C. The reported DR adjustments to cleared MW for the 2015/2016 and 2016/2017 Delivery Years include reductions in the level of committed MW due to the Demand Response Operational Resource Flexibility Transition Provision.
72 See OATT Attachment D0 § 5.14E. The reported DR adjustments to cleared MW for the 2016/2017, 2017/2018, and 2018/2019 Delivery Years include reductions in the level of committed MW due to the Demand Response Legacy Direct Load Control Transition Provision.
73 Pursuant to PJM Operating Agreement § 15.1.6(c), PJM Settlement shall attempt to close out and liquidate forward capacity commitments for PJM members that are declared in collateral default. The replacement transactions reported for the 2014/2015 Delivery Year included transactions associated with RTP Controls, Inc., which was declared in collateral default on March 9, 2012.
74 Effective with the 2019/2020 Delivery Year, available capacity from an EE Resource can be used to replace only EE Resource commitments. This rule change and related EE add back rule changes were endorsed at the December 17, 2015, meeting of the PJM Markets and Reliability Committee.

Table 5-13 RPM commitments and replacements for energy efficiency resources: June 1, 2007 to June 1, 2021

<table>
<thead>
<tr>
<th>UCAP (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPM Cleared</td>
</tr>
<tr>
<td>01-Jun-07</td>
</tr>
<tr>
<td>01-Jun-08</td>
</tr>
<tr>
<td>01-Jun-09</td>
</tr>
<tr>
<td>01-Jun-10</td>
</tr>
<tr>
<td>01-Jun-11</td>
</tr>
<tr>
<td>01-Jun-12</td>
</tr>
<tr>
<td>01-Jun-13</td>
</tr>
<tr>
<td>01-Jun-14</td>
</tr>
<tr>
<td>01-Jun-15</td>
</tr>
<tr>
<td>01-Jun-16</td>
</tr>
<tr>
<td>01-Jun-17</td>
</tr>
<tr>
<td>01-Jun-18</td>
</tr>
<tr>
<td>01-Jun-19</td>
</tr>
<tr>
<td>01-Jun-20</td>
</tr>
<tr>
<td>01-Jun-21</td>
</tr>
</tbody>
</table>

73 Pursuant to PJM Operating Agreement § 15.1.6(e), PJM Settlement shall attempt to close out and liquidate forward capacity commitments for PJM members that are declared in collateral default. The replacement transactions reported for the 2014/2015 Delivery Year included transactions associated with RTP Controls, Inc., which was declared in collateral default on March 9, 2012.
74 Effective with the 2019/2020 Delivery Year, available capacity from an EE Resource can be used to replace only EE Resource commitments. This rule change and related EE add back rule changes were endorsed at the December 17, 2015, meeting of the PJM Markets and Reliability Committee.
Market Conduct

Offer Caps and Offer Floors

Market power mitigation measures were applied to capacity resources such that the sell offer was set equal to the defined offer cap when the capacity market seller failed the market structure test for the auction, the submitted sell offer exceeded the defined offer cap, and the submitted sell offer, absent mitigation, would have increased the market clearing price.75

2020/2021 RPM Second Incremental Auction

As shown in Table 5-14, 464 generation resources submitted Capacity Performance offers in the 2020/2021 RPM Second Incremental Auction. Unit specific offer caps were calculated for six generation resources (1.3 percent), five of which were unit-specific with an APIR component. Of the 464 generation resources, 419 generation resources had the net CONE times B offer cap (90.3 percent), three Planned Generation Capacity Resource had an uncapped offer (0.6 percent), and the remaining 36 generation resources were price takers (7.8 percent). Market power mitigation was applied to the Capacity Performance sell offers of zero generation resources.

2021/2022 RPM First Incremental Auction

As shown in Table 5-14, 301 generation resources submitted Capacity Performance offers in the 2021/2022 RPM First Incremental Auction. Unit specific offer caps were calculated for zero generation resources (0.0 percent). Of the 301 generation resources, 285 generation resources had the net CONE times B offer cap (94.7 percent), nine Planned Generation Capacity Resource had an uncapped offer (3.0 percent), four generation resources had uncapped planned uprates plus net CONE times B offer cap for the existing portion of the units (1.3 percent), one generation resource had uncapped planned uprate and price taker for the existing portion of the unit (0.3 percent), and the remaining two generation resources were price takers (0.7 percent). Market power mitigation was applied to the Capacity Performance sell offers of zero generation resources.

MOPR Statistics

Market power mitigation measures are applied to MOPR Screened Generation Resources such that the sell offer is set equal to the MOPR Floor Offer Price when the submitted sell offer is less than the MOPR Floor Offer Price and an exemption or exception was not granted, or the sell offer is set equal to the agreed upon minimum level of sell offer when the sell offer is less than the agreed upon minimum level of sell offer based on a Unit-Specific Exception.

As shown in Table 5-15, of the 75.0 ICAP MW of MOPR Unit-Specific Exception requests for the 2020/2021 RPM Second Incremental Auction, requests for 75.0 MW were granted. Of the 1,390.0 MW of MOPR Unit-Specific Exception requests for the 2021/2022 RPM First Incremental Auction, requests for 1,390.0 MW were granted.

Table 5-14 ACR statistics: RPM Auctions conducted in third quarter, 2019

<table>
<thead>
<tr>
<th>Offer Cap/Mitigation Type</th>
<th>2020/2021 Second Incremental Auction</th>
<th>2021/2022 First Incremental Auction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of Generation Resources</td>
<td>Percent of Generation Resources Offered</td>
</tr>
<tr>
<td>Default ACR</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Unit specific ACR (APIR)</td>
<td>2</td>
<td>0.4%</td>
</tr>
<tr>
<td>Unit specific ACR (APIR and CPQR)</td>
<td>3</td>
<td>0.6%</td>
</tr>
<tr>
<td>Unit specific ACR (non-APIR)</td>
<td>1</td>
<td>0.2%</td>
</tr>
<tr>
<td>Unit specific ACR (non-APIR and CPQR)</td>
<td>0</td>
<td>0.0%</td>
</tr>
<tr>
<td>Opportunity cost input</td>
<td>0</td>
<td>0.0%</td>
</tr>
<tr>
<td>Default ACR and opportunity cost</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Net CONE times B</td>
<td>419</td>
<td>90.3%</td>
</tr>
<tr>
<td>Offer cap of 1.1 times BRA clearing price elected</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Uncapped planned uprate and default ACR</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Uncapped planned uprate and opportunity cost</td>
<td>0</td>
<td>0.0%</td>
</tr>
<tr>
<td>Uncapped planned uprate and Net CONE times B</td>
<td>0</td>
<td>0.0%</td>
</tr>
<tr>
<td>Uncapped planned uprate and price takers</td>
<td>0</td>
<td>0.0%</td>
</tr>
<tr>
<td>Uncapped planned uprate and 1.1 times BRA clearing price elected</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Uncapped planned generation resources</td>
<td>3</td>
<td>0.6%</td>
</tr>
<tr>
<td>Existing generation resources as price takers</td>
<td>36</td>
<td>7.8%</td>
</tr>
<tr>
<td>Total Generation Capacity Resources offered</td>
<td>464</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Table 5-15 MOPR statistics: RPM Auctions conducted in third quarter, 2019

<table>
<thead>
<tr>
<th>Number of Requests (Company-Plant Level)</th>
<th>ICAP (MW)</th>
<th>UCAP (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Requested</td>
<td>Granted</td>
</tr>
<tr>
<td>2020/2021 Second Incremental Auction</td>
<td>Unit-Specific Exception</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Other MOPR Screened Generation Resources</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>3</td>
</tr>
<tr>
<td>2021/2022 First Incremental Auction</td>
<td>Unit-Specific Exception</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Other MOPR Screened Generation Resources</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>7</td>
</tr>
</tbody>
</table>

There were additional MOPR Screened Generation Resources for which no exceptions or exemptions were requested and to which the MOPR floor was applied. Some numbers are not reported as a result of PJM confidentiality rules.

© 2019 Monitoring Analytics, LLC
Replacement Capacity

Table 5-16 shows the committed and replacement capacity for all capacity resources for June 1 of each year from 2007 through 2021. The 2020 through 2021 numbers are not final.

Table 5-16 RPM commitments and replacements for all Capacity Resources: June 1, 2007 to June 1, 2021

<table>
<thead>
<tr>
<th>UCAP (MW)</th>
<th>RPM Cleared</th>
<th>Adjustments to Cleared</th>
<th>Net Replacements</th>
<th>RPM Commitments</th>
<th>RPM Commitment Shortage</th>
<th>RPM Commitments Less Commitment Shortage</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-Jun-07</td>
<td>129,409.2</td>
<td>0.0</td>
<td>0.0</td>
<td>129,409.2</td>
<td>(8.1)</td>
<td>129,401.1</td>
</tr>
<tr>
<td>01-Jun-08</td>
<td>130,629.8</td>
<td>0.0</td>
<td>(766.5)</td>
<td>129,863.3</td>
<td>(246.3)</td>
<td>129,617.0</td>
</tr>
<tr>
<td>01-Jun-09</td>
<td>134,030.2</td>
<td>0.0</td>
<td>(2,068.2)</td>
<td>131,962.0</td>
<td>(14.7)</td>
<td>131,947.3</td>
</tr>
<tr>
<td>01-Jun-10</td>
<td>134,036.2</td>
<td>0.0</td>
<td>(4,179.0)</td>
<td>129,857.2</td>
<td>(8.8)</td>
<td>129,848.4</td>
</tr>
<tr>
<td>01-Jun-11</td>
<td>134,182.6</td>
<td>0.0</td>
<td>(6,717.6)</td>
<td>127,465.0</td>
<td>(79.3)</td>
<td>127,385.7</td>
</tr>
<tr>
<td>01-Jun-12</td>
<td>141,295.6</td>
<td>(11.7)</td>
<td>(9,400.6)</td>
<td>131,883.3</td>
<td>(157.2)</td>
<td>131,726.1</td>
</tr>
<tr>
<td>01-Jun-13</td>
<td>159,844.5</td>
<td>0.0</td>
<td>(12,235.3)</td>
<td>147,609.2</td>
<td>(65.4)</td>
<td>147,543.8</td>
</tr>
<tr>
<td>01-Jun-14</td>
<td>161,214.4</td>
<td>(9.4)</td>
<td>(13,615.9)</td>
<td>147,598.1</td>
<td>(1,208.9)</td>
<td>146,380.2</td>
</tr>
<tr>
<td>01-Jun-15</td>
<td>173,845.5</td>
<td>(326.1)</td>
<td>(11,849.4)</td>
<td>161,670.0</td>
<td>(1,822.0)</td>
<td>159,848.0</td>
</tr>
<tr>
<td>01-Jun-16</td>
<td>179,773.6</td>
<td>(24.6)</td>
<td>(16,157.5)</td>
<td>163,515.1</td>
<td>(924.4)</td>
<td>162,590.7</td>
</tr>
<tr>
<td>01-Jun-17</td>
<td>180,590.5</td>
<td>0.0</td>
<td>(13,982.7)</td>
<td>166,607.8</td>
<td>(625.3)</td>
<td>165,982.5</td>
</tr>
<tr>
<td>01-Jun-18</td>
<td>175,996.0</td>
<td>0.0</td>
<td>(12,057.8)</td>
<td>163,938.2</td>
<td>(150.5)</td>
<td>163,787.7</td>
</tr>
<tr>
<td>01-Jun-19</td>
<td>177,064.2</td>
<td>0.0</td>
<td>(12,300.3)</td>
<td>164,763.9</td>
<td>(9.3)</td>
<td>164,754.6</td>
</tr>
<tr>
<td>01-Jun-20</td>
<td>170,537.8</td>
<td>0.0</td>
<td>(610.1)</td>
<td>169,927.7</td>
<td>0.0</td>
<td>169,927.7</td>
</tr>
<tr>
<td>01-Jun-21</td>
<td>165,770.5</td>
<td>0.0</td>
<td>0.0</td>
<td>165,770.5</td>
<td>0.0</td>
<td>165,770.5</td>
</tr>
</tbody>
</table>

Market Performance

Figure 5-7 shows cleared MW weighted average capacity market prices on a delivery year basis for the entire history of the PJM capacity markets.

Table 5-17 shows RPM clearing prices for all RPM auctions held through the first nine months of 2019, and Table 5-18 shows the RPM cleared MW for all RPM auctions held through the first nine months of 2019.

Figure 5-8 shows the RPM cleared MW weighted average prices for each LDA for the current delivery year and all results for auctions for future delivery years that have been held through the first nine months of 2019. A summary of these weighted average prices is given in Table 5-19.

Table 5-20 shows RPM revenue by resource type for all RPM auctions held through the first nine months of 2019 with $9.4 billion for new/repower/reactivated generation resources based on the unforced MW cleared and the resource clearing prices. A resource classified as “new/repower/reactivated” is a capacity resource addition since the implementation of RPM and is considered “new/repower/reactivated” for its initial offer and all its subsequent offers in RPM auctions.

Table 5-21 shows RPM revenue by calendar year for all RPM auctions held through the first nine months of 2019. In 2017, RPM revenue was $8.8 billion. In 2018, RPM revenue was $10.3 billion.

Table 5-22 shows the RPM annual charges to load. For the 2018/2019 Delivery Year, RPM annual charges to load were $11.0 billion. For the 2019/2020 Delivery Year, annual charges to load are $7.0 billion.

77 For more details on replacement capacity, see “Analysis of Replacement Capacity for RPM Commitments: June 1, 2007 to June 1, 2019,” <http://www.monitoringanalytics.com/reports/Reports/2019/MM_Analysis_of_Replacement_Capacity_for_RPM_Commitments_June_1_2007_to_June_1_2019_20190913.pdf> (September 13, 2019).
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RPM Clearing Price ($ per MW-day)</td>
<td>$40.80</td>
<td>$40.80</td>
<td>$40.80</td>
<td>$40.80</td>
<td>$197.67</td>
<td>$197.67</td>
<td>$197.67</td>
<td>$197.67</td>
<td>$197.67</td>
<td>$197.67</td>
<td>$197.67</td>
<td>$197.67</td>
<td>$40.80</td>
<td>$40.80</td>
<td>$197.67</td>
<td>$197.67</td>
</tr>
<tr>
<td>RPM Clearing Price ($ per MW-day)</td>
<td>$310.00</td>
<td>$174.29</td>
</tr>
<tr>
<td>RPM Clearing Price ($ per MW-day)</td>
<td>$10.00</td>
</tr>
<tr>
<td>RPM Clearing Price ($ per MW-day)</td>
<td>$102.04</td>
<td>$191.32</td>
</tr>
<tr>
<td>RPM Clearing Price ($ per MW-day)</td>
<td>$174.29</td>
</tr>
<tr>
<td>RPM Clearing Price ($ per MW-day)</td>
<td>$50.00</td>
</tr>
<tr>
<td>RPM Clearing Price ($ per MW-day)</td>
<td>$101.50</td>
<td>$31.00</td>
<td>$71.00</td>
<td>$31.00</td>
</tr>
<tr>
<td>RPM Clearing Price ($ per MW-day)</td>
<td>$134.00</td>
</tr>
</tbody>
</table>

Table 5-17 Capacity market clearing prices: 2007/2008 through 2021/2022 RPM Auctions

© 2019 Monitoring Analytics, LLC
Table 5-17: Capacity market clearing prices: 2007/2008 through 2021/2022 RPM Auctions (continued)

<table>
<thead>
<tr>
<th>Product Type</th>
<th>RTA</th>
<th>MAAC</th>
<th>APS</th>
<th>PPL</th>
<th>EMAAC</th>
<th>SWMAAC</th>
<th>DPL South</th>
<th>PSUE</th>
<th>PSGU North</th>
<th>Pepco</th>
<th>ATSI</th>
<th>ComEd</th>
<th>BGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016/2017 Third Incremental Auction</td>
<td>$5.02</td>
<td>$10.02</td>
<td>$5.02</td>
<td>$10.02</td>
<td>$10.02</td>
<td>$10.02</td>
<td>$35.76</td>
<td>$184.97</td>
<td>$51.97</td>
<td>$10.02</td>
<td>$5.02</td>
<td>$10.02</td>
<td>$5.02</td>
</tr>
<tr>
<td>2016/2017 Third Incremental Auction</td>
<td>$5.02</td>
<td>$10.02</td>
<td>$5.02</td>
<td>$10.02</td>
<td>$10.02</td>
<td>$10.02</td>
<td>$35.76</td>
<td>$184.97</td>
<td>$51.97</td>
<td>$10.02</td>
<td>$5.02</td>
<td>$10.02</td>
<td>$5.02</td>
</tr>
<tr>
<td>2016/2017 BPA Capacity Performance</td>
<td>$151.50</td>
</tr>
<tr>
<td>2017/2018 Annual</td>
<td>$60.00</td>
</tr>
<tr>
<td>2018/2019 Annual</td>
<td>$34.99</td>
</tr>
<tr>
<td>2019/2020 Annual</td>
<td>$100.00</td>
</tr>
<tr>
<td>2019/2020 Annual</td>
<td>$100.00</td>
</tr>
<tr>
<td>2020/2021 Annual</td>
<td>$140.00</td>
</tr>
<tr>
<td>2021/2022 Annual</td>
<td>$23.00</td>
</tr>
<tr>
<td>Delivery Year</td>
<td>Auction</td>
<td>UCAP (MW)</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>2007/2008</td>
<td>BASE</td>
<td>88,410.2</td>
<td></td>
</tr>
<tr>
<td>2008/2009</td>
<td>BASE</td>
<td>88,745.1</td>
<td></td>
</tr>
<tr>
<td>2008/2009</td>
<td>THIRD</td>
<td>719.5</td>
<td></td>
</tr>
<tr>
<td>2009/2010</td>
<td>BASE</td>
<td>58,684.1</td>
<td></td>
</tr>
<tr>
<td>2009/2010</td>
<td>THIRD</td>
<td>1,732.1</td>
<td></td>
</tr>
<tr>
<td>2010/2011</td>
<td>BASE</td>
<td>68,77.4</td>
<td></td>
</tr>
<tr>
<td>2010/2011</td>
<td>THIRD</td>
<td>1,311.3</td>
<td></td>
</tr>
<tr>
<td>2010/2012</td>
<td>BASE</td>
<td>132,264.5</td>
<td></td>
</tr>
<tr>
<td>2010/2012</td>
<td>FIRST</td>
<td>361.1</td>
<td></td>
</tr>
<tr>
<td>2010/2012</td>
<td>THIRD</td>
<td>1,557.0</td>
<td></td>
</tr>
<tr>
<td>2012/2013</td>
<td>BASE</td>
<td>70,679.4</td>
<td></td>
</tr>
<tr>
<td>2012/2013</td>
<td>FIRST</td>
<td>452.2</td>
<td></td>
</tr>
<tr>
<td>2012/2013</td>
<td>SECOND</td>
<td>2,181.8</td>
<td></td>
</tr>
<tr>
<td>2013/2014</td>
<td>BASE</td>
<td>85,103.4</td>
<td></td>
</tr>
<tr>
<td>2013/2014</td>
<td>FIRST</td>
<td>1,719.5</td>
<td></td>
</tr>
<tr>
<td>2013/2014</td>
<td>SECOND</td>
<td>1,143.7</td>
<td></td>
</tr>
<tr>
<td>2013/2014</td>
<td>THIRD</td>
<td>1,449.0</td>
<td></td>
</tr>
<tr>
<td>2014/2015</td>
<td>BASE</td>
<td>82,787.8</td>
<td></td>
</tr>
<tr>
<td>2014/2015</td>
<td>FIRST</td>
<td>2,590.2</td>
<td></td>
</tr>
<tr>
<td>2014/2015</td>
<td>SECOND</td>
<td>2,089.4</td>
<td></td>
</tr>
<tr>
<td>2014/2015</td>
<td>THIRD</td>
<td>2,517.4</td>
<td></td>
</tr>
<tr>
<td>2015/2016</td>
<td>BASE</td>
<td>87,870.2</td>
<td></td>
</tr>
<tr>
<td>2015/2016</td>
<td>FIRST</td>
<td>1,523.6</td>
<td></td>
</tr>
<tr>
<td>2015/2016</td>
<td>SECOND</td>
<td>860.3</td>
<td></td>
</tr>
<tr>
<td>2015/2016</td>
<td>THIRD</td>
<td>1,008.0</td>
<td></td>
</tr>
<tr>
<td>2016/2017</td>
<td>BASE</td>
<td>22,136.2</td>
<td></td>
</tr>
<tr>
<td>2016/2017</td>
<td>FIRST</td>
<td>7,509.3</td>
<td></td>
</tr>
<tr>
<td>2016/2017</td>
<td>SECOND</td>
<td>1,032.3</td>
<td></td>
</tr>
<tr>
<td>2016/2017</td>
<td>THIRD</td>
<td>1,269.0</td>
<td></td>
</tr>
<tr>
<td>2017/2018</td>
<td>BASE</td>
<td>18,762.2</td>
<td></td>
</tr>
<tr>
<td>2017/2018</td>
<td>FIRST</td>
<td>516.3</td>
<td></td>
</tr>
<tr>
<td>2017/2018</td>
<td>SECOND</td>
<td>12,042.1</td>
<td></td>
</tr>
<tr>
<td>2017/2018</td>
<td>THIRD</td>
<td>173.6</td>
<td></td>
</tr>
<tr>
<td>2018/2019</td>
<td>BASE</td>
<td>24,197.2</td>
<td></td>
</tr>
<tr>
<td>2018/2019</td>
<td>FIRST</td>
<td>780.5</td>
<td></td>
</tr>
<tr>
<td>2018/2019</td>
<td>SECOND</td>
<td>873.5</td>
<td></td>
</tr>
<tr>
<td>2018/2019</td>
<td>THIRD</td>
<td>188.8</td>
<td></td>
</tr>
<tr>
<td>2019/2020</td>
<td>BASE</td>
<td>67,127.3</td>
<td></td>
</tr>
<tr>
<td>2019/2020</td>
<td>FIRST</td>
<td>293.0</td>
<td></td>
</tr>
<tr>
<td>2019/2020</td>
<td>SECOND</td>
<td>808.0</td>
<td></td>
</tr>
<tr>
<td>2019/2020</td>
<td>THIRD</td>
<td>1,432.2</td>
<td></td>
</tr>
<tr>
<td>2020/2021</td>
<td>BASE</td>
<td>69,128.4</td>
<td></td>
</tr>
<tr>
<td>2020/2021</td>
<td>FIRST</td>
<td>823.8</td>
<td></td>
</tr>
<tr>
<td>2020/2021</td>
<td>SECOND</td>
<td>473.0</td>
<td></td>
</tr>
<tr>
<td>2020/2021</td>
<td>THIRD</td>
<td>5127.4</td>
<td></td>
</tr>
<tr>
<td>2021/2022</td>
<td>BASE</td>
<td>61,372.9</td>
<td></td>
</tr>
<tr>
<td>2021/2022</td>
<td>FIRST</td>
<td>473.0</td>
<td></td>
</tr>
<tr>
<td>2021/2022</td>
<td>SECOND</td>
<td>473.0</td>
<td></td>
</tr>
<tr>
<td>2021/2022</td>
<td>THIRD</td>
<td>238.8</td>
<td></td>
</tr>
</tbody>
</table>

78 The MW values in this table refer to rest of LDA or RTD values, which are net of nested LDA values.
Table 5-19 Weighted average clearing prices by zone: 2018/2019 through 2021/2022

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LDA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AEP</td>
<td>$158.20</td>
<td>$93.63</td>
<td>$75.44</td>
<td>$139.59</td>
</tr>
<tr>
<td>APS</td>
<td>$158.20</td>
<td>$93.63</td>
<td>$75.44</td>
<td>$139.59</td>
</tr>
<tr>
<td>ATSI</td>
<td>$148.42</td>
<td>$92.97</td>
<td>$73.41</td>
<td>$160.97</td>
</tr>
<tr>
<td>Cleveland</td>
<td>$158.68</td>
<td>$89.17</td>
<td>$69.47</td>
<td>$148.05</td>
</tr>
<tr>
<td>ComEd</td>
<td>$199.02</td>
<td>$188.90</td>
<td>$183.04</td>
<td>$192.81</td>
</tr>
<tr>
<td>DAY</td>
<td>$158.20</td>
<td>$93.63</td>
<td>$74.10</td>
<td>$139.91</td>
</tr>
<tr>
<td>DEOK</td>
<td>$158.20</td>
<td>$93.63</td>
<td>$127.74</td>
<td>$136.38</td>
</tr>
<tr>
<td>DLCO</td>
<td>$158.20</td>
<td>$93.63</td>
<td>$75.44</td>
<td>$139.59</td>
</tr>
<tr>
<td>Dominion</td>
<td>$158.20</td>
<td>$93.63</td>
<td>$75.44</td>
<td>$139.59</td>
</tr>
<tr>
<td>EKPC</td>
<td>$158.20</td>
<td>$93.63</td>
<td>$75.44</td>
<td>$139.59</td>
</tr>
<tr>
<td>MAAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AECO</td>
<td>$214.31</td>
<td>$112.48</td>
<td>$184.46</td>
<td>$164.94</td>
</tr>
<tr>
<td>DPL</td>
<td>$214.31</td>
<td>$112.48</td>
<td>$184.46</td>
<td>$164.94</td>
</tr>
<tr>
<td>DPL South</td>
<td>$211.38</td>
<td>$115.95</td>
<td>$181.80</td>
<td>$164.46</td>
</tr>
<tr>
<td>JCP</td>
<td>$214.31</td>
<td>$112.48</td>
<td>$184.46</td>
<td>$164.94</td>
</tr>
<tr>
<td>PECO</td>
<td>$214.31</td>
<td>$112.48</td>
<td>$184.46</td>
<td>$164.94</td>
</tr>
<tr>
<td>PSEG</td>
<td>$210.92</td>
<td>$110.56</td>
<td>$185.11</td>
<td>$202.91</td>
</tr>
<tr>
<td>PSEG North</td>
<td>$211.71</td>
<td>$116.03</td>
<td>$183.68</td>
<td>$204.63</td>
</tr>
<tr>
<td>RECO</td>
<td>$214.31</td>
<td>$112.48</td>
<td>$184.46</td>
<td>$164.94</td>
</tr>
<tr>
<td>SWMAAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BGE</td>
<td>$141.58</td>
<td>$88.20</td>
<td>$81.66</td>
<td>$195.66</td>
</tr>
<tr>
<td>Peco</td>
<td>$144.90</td>
<td>$90.59</td>
<td>$85.16</td>
<td>$136.09</td>
</tr>
<tr>
<td>WMAAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Met-Ed</td>
<td>$152.65</td>
<td>$93.81</td>
<td>$84.32</td>
<td>$138.61</td>
</tr>
<tr>
<td>PENELEC</td>
<td>$152.65</td>
<td>$93.81</td>
<td>$84.32</td>
<td>$138.61</td>
</tr>
<tr>
<td>PPL</td>
<td>$147.90</td>
<td>$88.53</td>
<td>$85.50</td>
<td>$139.80</td>
</tr>
</tbody>
</table>
Table 5-20 RPM revenue by type: 2007/2008 through 2021/2022

<table>
<thead>
<tr>
<th>Year</th>
<th>Coal Resource</th>
<th>Gas Resource</th>
<th>Hydroelectric Resource</th>
<th>Nuclear Resource</th>
<th>Oil Resource</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007/2008</td>
<td>$5,537,085</td>
<td>$0</td>
<td>$22,225,380</td>
<td>$1,019,060,026</td>
<td>$0</td>
</tr>
<tr>
<td>2008/2009</td>
<td>$34,959,116</td>
<td>$0</td>
<td>$40,181,903</td>
<td>$1,835,059,769</td>
<td>$0</td>
</tr>
<tr>
<td>2009/2010</td>
<td>$35,575,303</td>
<td>$0</td>
<td>$56,179,753</td>
<td>$2,409,315,563</td>
<td>$0</td>
</tr>
<tr>
<td>2010/2011</td>
<td>$60,235,796</td>
<td>$0</td>
<td>$106,046,871</td>
<td>$2,648,278,766</td>
<td>$0</td>
</tr>
<tr>
<td>2011/2012</td>
<td>$55,795,785</td>
<td>$139,812</td>
<td>$185,421,273</td>
<td>$1,586,755,249</td>
<td>$0</td>
</tr>
<tr>
<td>2012/2013</td>
<td>$346,487,897</td>
<td>$11,408,552</td>
<td>$13,260,822</td>
<td>$1,014,858,378</td>
<td>$0</td>
</tr>
<tr>
<td>2013/2014</td>
<td>$558,715,141</td>
<td>$21,984,174</td>
<td>$51,804,645</td>
<td>$1,741,613,525</td>
<td>$0</td>
</tr>
<tr>
<td>2014/2015</td>
<td>$681,315,139</td>
<td>$42,308,549</td>
<td>$135,573,409</td>
<td>$1,935,468,356</td>
<td>$0</td>
</tr>
<tr>
<td>2015/2016</td>
<td>$903,496,003</td>
<td>$66,652,986</td>
<td>$269,806,674</td>
<td>$2,902,870,267</td>
<td>$0</td>
</tr>
<tr>
<td>2016/2017</td>
<td>$446,952,356</td>
<td>$68,709,670</td>
<td>$249,091,507</td>
<td>$2,137,545,515</td>
<td>$0</td>
</tr>
<tr>
<td>2017/2018</td>
<td>$515,145,457</td>
<td>$86,147,605</td>
<td>$218,710,769</td>
<td>$2,452,887,763</td>
<td>$0</td>
</tr>
<tr>
<td>2018/2019</td>
<td>$637,742,320</td>
<td>$103,105,796</td>
<td>$263,475,004</td>
<td>$2,637,322,434</td>
<td>$0</td>
</tr>
<tr>
<td>2019/2020</td>
<td>$375,353,169</td>
<td>$92,569,666</td>
<td>$84,207,557</td>
<td>$1,679,065,727</td>
<td>$0</td>
</tr>
<tr>
<td>2020/2021</td>
<td>$345,185,064</td>
<td>$97,323,679</td>
<td>$74,249,155</td>
<td>$1,320,801,488</td>
<td>$0</td>
</tr>
<tr>
<td>2021/2022</td>
<td>$633,862,672</td>
<td>$160,757,227</td>
<td>$130,201,888</td>
<td>$2,080,004,418</td>
<td>$0</td>
</tr>
</tbody>
</table>

Notes:

79. A resource classified as "new/repower/reactivated" is a capacity resource addition since the implementation of RPM and is considered "new/repower/reactivated" for its initial offer and all its subsequent offers in RPM Auctions.

80. The results for the ATSI Integration Auctions are not included in this table.
Table 5-21 RPM revenue by calendar year: 2007 through 2022\(^{81}\)

<table>
<thead>
<tr>
<th>Year</th>
<th>Weighted Average RPM Price ($ per MW-day)</th>
<th>Weighted Average Cleared UCAP (MW)</th>
<th>Effective Days</th>
<th>RPM Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>$89.78</td>
<td>129,409.2</td>
<td>214</td>
<td>$2,486,310,108</td>
</tr>
<tr>
<td>2008</td>
<td>$111.93</td>
<td>130,223.2</td>
<td>366</td>
<td>$5,334,880,241</td>
</tr>
<tr>
<td>2009</td>
<td>$142.74</td>
<td>132,772.0</td>
<td>365</td>
<td>$6,917,391,702</td>
</tr>
<tr>
<td>2010</td>
<td>$164.71</td>
<td>134,033.9</td>
<td>365</td>
<td>$8,058,113,907</td>
</tr>
<tr>
<td>2011</td>
<td>$135.14</td>
<td>134,105.2</td>
<td>365</td>
<td>$6,615,022,130</td>
</tr>
<tr>
<td>2012</td>
<td>$89.01</td>
<td>137,684.7</td>
<td>366</td>
<td>$4,485,656,150</td>
</tr>
<tr>
<td>2013</td>
<td>$99.39</td>
<td>154,044.3</td>
<td>365</td>
<td>$5,588,442,225</td>
</tr>
<tr>
<td>2014</td>
<td>$122.32</td>
<td>160,668.7</td>
<td>365</td>
<td>$7,173,539,072</td>
</tr>
<tr>
<td>2015</td>
<td>$146.10</td>
<td>169,112.0</td>
<td>365</td>
<td>$9,018,343,004</td>
</tr>
<tr>
<td>2016</td>
<td>$137.69</td>
<td>176,742.6</td>
<td>366</td>
<td>$8,906,998,628</td>
</tr>
<tr>
<td>2017</td>
<td>$133.19</td>
<td>180,272.0</td>
<td>365</td>
<td>$8,763,578,112</td>
</tr>
<tr>
<td>2018</td>
<td>$159.31</td>
<td>177,680.6</td>
<td>365</td>
<td>$10,311,688,133</td>
</tr>
<tr>
<td>2019</td>
<td>$135.58</td>
<td>176,503.3</td>
<td>365</td>
<td>$8,734,613,179</td>
</tr>
<tr>
<td>2020</td>
<td>$111.68</td>
<td>173,203.0</td>
<td>366</td>
<td>$7,079,628,476</td>
</tr>
<tr>
<td>2021</td>
<td>$137.11</td>
<td>167,395.9</td>
<td>365</td>
<td>$8,377,445,344</td>
</tr>
<tr>
<td>2022</td>
<td>$154.12</td>
<td>165,770.5</td>
<td>151</td>
<td>$3,857,917,931</td>
</tr>
</tbody>
</table>

\(^{81}\) The results for the ATSI Integration Auctions are not included in this table.

Figure 5-7 History of capacity prices: 1999/2000 through 2021/2022\(^{82}\)

\(^{82}\) The 1999/2000 through 2006/2007 capacity prices are CCM combined market, weighted average prices. The 2007/2008 through 2021/2022 capacity prices are RPM weighted average prices. The CCM data points plotted are cleared MW weighted average prices for the daily and monthly markets by delivery year. The RPM data points plotted are RPM resource clearing prices. For the 2014/2015 and subsequent delivery years, only the prices for Annual Resources or Capacity Performance Resources are plotted.
Figure 5-8 Map of RPM capacity prices: 2018/2019 through 2021/2022
Table 5-22 RPM cost to load: 2018/2019 through 2021/2022 RPM Auctions

<table>
<thead>
<tr>
<th>Year</th>
<th>Rest of RTO</th>
<th>Rest of MAAC</th>
<th>BGE</th>
<th>ComEd</th>
<th>Pepco</th>
<th>PPL</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018/2019</td>
<td>$164.70</td>
<td>$218.98</td>
<td>$158.20</td>
<td>$212.03</td>
<td>$156.90</td>
<td>$155.11</td>
<td>$164,504.2</td>
</tr>
<tr>
<td></td>
<td>80,837.7</td>
<td>31,118.9</td>
<td>7,071.4</td>
<td>4,637.2</td>
<td>7,329.2</td>
<td>3,200.9</td>
<td>10,954,279,310</td>
</tr>
<tr>
<td>Net Load Price ($ per MW-day)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UCAP Obligation (MW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual Charges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019/2020</td>
<td>$98.07</td>
<td>$115.58</td>
<td>$97.79</td>
<td>$192.56</td>
<td>$92.90</td>
<td>$115.83</td>
<td>$164,792.8</td>
</tr>
<tr>
<td></td>
<td>89,185.9</td>
<td>24,415.1</td>
<td>7,595.2</td>
<td>24,985.1</td>
<td>7,330.3</td>
<td>11,281.1</td>
<td>6,994,374,033</td>
</tr>
<tr>
<td>2020/2021</td>
<td>$77.03</td>
<td>$86.84</td>
<td>$175.11</td>
<td>$184.91</td>
<td>$98.90</td>
<td>$150.80</td>
<td>$164,247.8</td>
</tr>
<tr>
<td></td>
<td>69,245.7</td>
<td>29,695.1</td>
<td>35,335.5</td>
<td>24,785.1</td>
<td>7,330.3</td>
<td>14,427.1</td>
<td>7,015,532,719</td>
</tr>
<tr>
<td>2021/2022</td>
<td>$140.45</td>
<td>$162.79</td>
<td>$157.96</td>
<td>$156.73</td>
<td>$193.26</td>
<td>$185.16</td>
<td>$163,741.4</td>
</tr>
<tr>
<td></td>
<td>82,239.3</td>
<td>23,992.8</td>
<td>14,271.1</td>
<td>7,412.6</td>
<td>24,651.2</td>
<td>11,007.1</td>
<td>5,394,682,433</td>
</tr>
</tbody>
</table>

83 The RPM annual charges are calculated using the rounded, net load prices as posted in the PJM RPM Auction results.
84 There is no separate obligation for DPL South as the DPL South LDA is completely contained within the DPL Zone. There is no separate obligation for PSEG North as the PSEG North LDA is completely contained within the PSEG Zone.
85 The Net Load Prices and obligation MW for 2020/2021 and 2021/2022 are not finalized.

Reliability Must Run (RMR) Service

PJM must make out of market payments to units for Reliability Must Run (RMR) service during periods when a unit that would otherwise have been deactivated is needed for reliability.86 The need for RMR service reflects a flawed market design and/or planning process problems. If a unit is needed for reliability, the market should reflect a locational value consistent with that need which would result in the unit remaining in service or being replaced by a competitor unit. The planning process should evaluate the impact of the loss of units at risk and determine in advance whether transmission upgrades are required.87 88

Table 5-23 shows units that have provided RMR service to PJM.

86 OATT Part V.
87 See, e.g., 140 FERC ¶ 61,237 at P 36 (2012) (“The evaluation of alternatives to an SSR designation is an important step that deserves the full consideration of MISO and its stakeholders to ensure that SSR Agreements are used only as a ‘limited, last-resort measure’.”); 118 FERC ¶ 61,243 at P 41 (2007) (“the market participants that pay for the agreements pay out-of-market prices for the service provided under the RMR agreements, which broadly hinders market development and performance [footnote omitted]. As a result of these factors, we have concluded that RMR agreements should be used as a last resort.”); 110 FERC ¶ 61,315 at P 40 (2005) (“The Commission has stated on several occasions that it shares the concerns . . . that RMR agreements not proliferate as an alternative pricing option for generators, and that they are used strictly as a last resort so that units needed for reliability receive reasonable compensation.”).
Table 5-23 RMR service summary

<table>
<thead>
<tr>
<th>Unit Names</th>
<th>Owner</th>
<th>ICAP (MW)</th>
<th>Cost Recovery Method</th>
<th>Docket Numbers</th>
<th>Start of Term</th>
<th>End of Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.L. England 2</td>
<td>RC Cape May Holdings, LLC</td>
<td>150.0</td>
<td>Cost of Service Recovery Rate</td>
<td>ER17-1083</td>
<td>01-May-17</td>
<td>30-Apr-19</td>
</tr>
<tr>
<td>Yorktown 1</td>
<td>Dominion Virginia Power</td>
<td>159.0</td>
<td>Deactivation Avoidable Cost Rate</td>
<td>ER17-750</td>
<td>06-Jan-17</td>
<td>08-Mar-19</td>
</tr>
<tr>
<td>Yorktown 2</td>
<td>Dominion Virginia Power</td>
<td>164.0</td>
<td>Deactivation Avoidable Cost Rate</td>
<td>ER17-750</td>
<td>06-Jan-17</td>
<td>08-Mar-19</td>
</tr>
<tr>
<td>B.L. England 3</td>
<td>RC Cape May Holdings, LLC</td>
<td>148.0</td>
<td>Cost of Service Recovery Rate</td>
<td>ER17-1083</td>
<td>01-May-17</td>
<td>24-Jan-18</td>
</tr>
<tr>
<td>Ashtabula</td>
<td>FirstEnergy Service Company</td>
<td>210.0</td>
<td>Deactivation Avoidable Cost Rate</td>
<td>ER12-2710</td>
<td>01-Sep-12</td>
<td>15-Sep-14</td>
</tr>
<tr>
<td>Eastlake 1</td>
<td>FirstEnergy Service Company</td>
<td>190.0</td>
<td>Deactivation Avoidable Cost Rate</td>
<td>ER12-2710</td>
<td>01-Sep-12</td>
<td>15-Sep-14</td>
</tr>
<tr>
<td>Eastlake 2</td>
<td>FirstEnergy Service Company</td>
<td>190.0</td>
<td>Deactivation Avoidable Cost Rate</td>
<td>ER12-2710</td>
<td>01-Sep-12</td>
<td>15-Sep-14</td>
</tr>
<tr>
<td>Eastlake 3</td>
<td>FirstEnergy Service Company</td>
<td>190.0</td>
<td>Deactivation Avoidable Cost Rate</td>
<td>ER12-2710</td>
<td>01-Sep-12</td>
<td>15-Sep-14</td>
</tr>
<tr>
<td>Lakeshore</td>
<td>FirstEnergy Service Company</td>
<td>190.0</td>
<td>Deactivation Avoidable Cost Rate</td>
<td>ER12-2710</td>
<td>01-Sep-12</td>
<td>15-Sep-14</td>
</tr>
<tr>
<td>Eframa 4</td>
<td>GenOn Power Midwest, LP</td>
<td>171.0</td>
<td>Cost of Service Recovery Rate</td>
<td>ER12-1901</td>
<td>01-Jun-12</td>
<td>01-Oct-12</td>
</tr>
<tr>
<td>Niles 1</td>
<td>GenOn Power Midwest, LP</td>
<td>109.0</td>
<td>Cost of Service Recovery Rate</td>
<td>ER12-1901</td>
<td>01-Jun-12</td>
<td>01-Oct-12</td>
</tr>
<tr>
<td>Cromby 2 and Diesel</td>
<td>Exelon Generation Company, LLC</td>
<td>203.7</td>
<td>Cost of Service Recovery Rate</td>
<td>ER10-1418</td>
<td>01-Jun-11</td>
<td>01-Jan-12</td>
</tr>
<tr>
<td>Eddystone 2</td>
<td>Exelon Generation Company, LLC</td>
<td>309.0</td>
<td>Cost of Service Recovery Rate</td>
<td>ER10-1418</td>
<td>01-Jun-11</td>
<td>01-Jan-12</td>
</tr>
<tr>
<td>Brunot Island CT2A,</td>
<td>Orion Power MidWest, LP</td>
<td>244.0</td>
<td>Cost of Service Recovery Rate</td>
<td>ER06-993</td>
<td>16-May-06</td>
<td>05-Jul-07</td>
</tr>
<tr>
<td>CT2B, CT3 and CC4</td>
<td>Orion Power MidWest, LP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hudson 1</td>
<td>PSEG Energy Resources & Trade LLC and PSEG Fossil LLC</td>
<td>355.0</td>
<td>Cost of Service Recovery Rate</td>
<td>ER05-644, ER11-2688</td>
<td>25-Feb-05</td>
<td>08-Dec-11</td>
</tr>
<tr>
<td>Sewaren 1–4</td>
<td>PSEG Energy Resources & Trade LLC and PSEG Fossil LLC</td>
<td>453.0</td>
<td>Cost of Service Recovery Rate</td>
<td>ER05-644</td>
<td>25-Feb-05</td>
<td>01-Sep-08</td>
</tr>
</tbody>
</table>

Generator Performance

Generator performance results from the interaction between the physical characteristics of the units and the level of expenditures made to maintain the capability of the units, which in turn is a function of incentives from energy, ancillary services and capacity markets. Generator performance indices include those based on total hours in a period (generator performance factors) and those based on hours when units are needed to operate by the system operator (generator forced outage rates).

Capacity Factor

Capacity factor measures the actual output of a power plant over a period of time compared to the potential output of the unit had it been running at full nameplate capacity for every hour during that period. Table 5-24 shows the capacity factors by unit type in the first nine months of 2018 and 2019. In the first nine months of 2019, nuclear units had a capacity factor of 93.8 percent, compared to 94.0 percent in the first nine months of 2018; combined cycle units had a capacity factor of 66.0 percent in the first nine months of 2019, compared to a capacity factor of 62.2 percent in the first nine months of 2018; all steam units had a capacity factor of 37.3 percent in the first nine months of 2019, compared to 41.6 percent in the first nine months of 2018; coal units had a capacity factor of 42.4 percent in the first nine months of 2019, compared to 47.5 percent in the first nine months of 2018.
Table 5-24 Capacity factor (By unit type (GWh)): January through September, 2018 and 2019 89, 90

<table>
<thead>
<tr>
<th>Unit Type</th>
<th>Generation (GWh)</th>
<th>Capacity Factor</th>
<th>Generation (GWh)</th>
<th>Capacity Factor</th>
<th>Change in 2019 from 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery</td>
<td>10.6</td>
<td>0.6%</td>
<td>15.1</td>
<td>0.7%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Combined Cycle</td>
<td>175,780.0</td>
<td>62.2%</td>
<td>211,909.2</td>
<td>66.0%</td>
<td>3.8%</td>
</tr>
<tr>
<td>Single Fuel</td>
<td>144,728.4</td>
<td>65.7%</td>
<td>180,345.5</td>
<td>71.7%</td>
<td>6.0%</td>
</tr>
<tr>
<td>Dual Fuel</td>
<td>31,051.6</td>
<td>49.8%</td>
<td>31,563.7</td>
<td>45.4%</td>
<td>(4.4%)</td>
</tr>
<tr>
<td>Combustion Turbine</td>
<td>15,077.5</td>
<td>8.0%</td>
<td>12,153.3</td>
<td>6.4%</td>
<td>(1.6%)</td>
</tr>
<tr>
<td>Single Fuel</td>
<td>9,916.5</td>
<td>7.1%</td>
<td>8,255.5</td>
<td>5.9%</td>
<td>(1.2%)</td>
</tr>
<tr>
<td>Dual Fuel</td>
<td>5,161.0</td>
<td>10.3%</td>
<td>3,897.8</td>
<td>7.6%</td>
<td>(2.7%)</td>
</tr>
<tr>
<td>Diesel</td>
<td>264.1</td>
<td>11.4%</td>
<td>200.3</td>
<td>7.8%</td>
<td>(3.6%)</td>
</tr>
<tr>
<td>Single Fuel</td>
<td>255.1</td>
<td>12.5%</td>
<td>196.3</td>
<td>8.5%</td>
<td>(3.9%)</td>
</tr>
<tr>
<td>Dual Fuel</td>
<td>9.0</td>
<td>3.3%</td>
<td>4.0</td>
<td>1.5%</td>
<td>(1.8%)</td>
</tr>
<tr>
<td>Diesel (Landfill gas)</td>
<td>1,332.4</td>
<td>51.6%</td>
<td>1,240.4</td>
<td>48.8%</td>
<td>(2.8%)</td>
</tr>
<tr>
<td>Fuel Cell</td>
<td>168.8</td>
<td>84.8%</td>
<td>163.1</td>
<td>80.8%</td>
<td>(4.0%)</td>
</tr>
<tr>
<td>Nuclear</td>
<td>214,603.2</td>
<td>94.0%</td>
<td>210,542.6</td>
<td>93.8%</td>
<td>(0.2%)</td>
</tr>
<tr>
<td>Pumped Storage Hydro</td>
<td>5,723.9</td>
<td>17.3%</td>
<td>4,597.2</td>
<td>13.9%</td>
<td>(3.4%)</td>
</tr>
<tr>
<td>Run of River Hydro</td>
<td>8,466.9</td>
<td>43.5%</td>
<td>8,818.5</td>
<td>44.7%</td>
<td>1.2%</td>
</tr>
<tr>
<td>Solar</td>
<td>1,704.4</td>
<td>19.6%</td>
<td>2,218.6</td>
<td>21.0%</td>
<td>1.4%</td>
</tr>
<tr>
<td>Steam</td>
<td>197,444.7</td>
<td>41.6%</td>
<td>165,357.5</td>
<td>37.3%</td>
<td>(4.3%)</td>
</tr>
<tr>
<td>Biomass</td>
<td>4,916.7</td>
<td>63.0%</td>
<td>4,511.4</td>
<td>61.4%</td>
<td>(1.6%)</td>
</tr>
<tr>
<td>Coal</td>
<td>186,816.7</td>
<td>47.5%</td>
<td>155,939.5</td>
<td>42.4%</td>
<td>(5.1%)</td>
</tr>
<tr>
<td>Single Fuel</td>
<td>182,058.5</td>
<td>49.0%</td>
<td>153,068.2</td>
<td>44.3%</td>
<td>(4.7%)</td>
</tr>
<tr>
<td>Dual Fuel</td>
<td>4,758.2</td>
<td>21.7%</td>
<td>2,871.3</td>
<td>13.1%</td>
<td>(8.6%)</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>5,346.5</td>
<td>38.7%</td>
<td>4,807.9</td>
<td>42.2%</td>
<td>3.5%</td>
</tr>
<tr>
<td>Single Fuel</td>
<td>552.7</td>
<td>45.2%</td>
<td>354.1</td>
<td>50.8%</td>
<td>5.6%</td>
</tr>
<tr>
<td>Dual Fuel</td>
<td>4,793.9</td>
<td>25.0%</td>
<td>4,453.8</td>
<td>23.4%</td>
<td>(1.6%)</td>
</tr>
<tr>
<td>Oil</td>
<td>364.8</td>
<td>1.6%</td>
<td>98.6</td>
<td>0.7%</td>
<td>(0.9%)</td>
</tr>
<tr>
<td>Wind</td>
<td>15,120.1</td>
<td>27.0%</td>
<td>16,973.8</td>
<td>28.1%</td>
<td>1.1%</td>
</tr>
<tr>
<td>Total</td>
<td>635,701.4</td>
<td>48.9%</td>
<td>634,192.3</td>
<td>48.3%</td>
<td>(0.6%)</td>
</tr>
</tbody>
</table>

89 The capacity factors in this table are based on nameplate capacity values, and are calculated based on when the units come on line.
90 The subcategories of steam units are consolidated consistent with confidentiality rules. Coal is comprised of coal and waste coal. Natural gas is comprised of natural gas and propane. Oil is comprised of both heavy and light oil. Biomass is comprised of biomass, landfill gas, and municipal solid waste.

Generator Performance Factors
Generator outages fall into three categories: planned, maintenance, and forced. The MW on outage vary throughout the year. For example, the MW on planned outage are generally highest in the spring and fall, as shown in Figure 5-9, due to restrictions on planned outages during the winter and summer. The effect of the seasonal variation in outages can be seen in the monthly generator performance metrics in Figure 5-9.

Figure 5-9 Outages (MW): 2012 through September 2019

Performance factors include the equivalent availability factor (EAF), the equivalent maintenance outage factor (EMOF), the equivalent planned outage factor (EPOF) and the equivalent forced outage factor (EFOF). These four factors add to 100 percent for any generating unit. The EAF is the proportion of hours in a year when a unit is available to generate at full capacity while...
the three outage factors include all the hours when a unit is unavailable. The EMOF is the proportion of hours in a year when a unit is unavailable because of maintenance outages and maintenance deratings. The EPOF is the proportion of hours in a year when a unit is unavailable because of planned outages and planned deratings. The EFOF is the proportion of hours in a year when a unit is unavailable because of forced outages and forced deratings.

The PJM aggregate EAF, EFOF, EPOF, and EMOF are shown in Figure 5-10. Metrics by unit type are shown in Table 5-25.

Figure 5-10 Equivalent outage and availability factors: 2007 to 2019
Table 5-25 EFOF, EPOF, EMOF and EAF by unit type: January through September, 2007 through 2019

<table>
<thead>
<tr>
<th>Year</th>
<th>Coal EFOF</th>
<th>Coal EPOF</th>
<th>Coal EMOF</th>
<th>Coal EAF</th>
<th>Combined Cycle EFOF</th>
<th>Combined Cycle EPOF</th>
<th>Combined Cycle EMOF</th>
<th>Combined Cycle EAF</th>
<th>Diesel EFOF</th>
<th>Diesel EPOF</th>
<th>Diesel EMOF</th>
<th>Diesel EAF</th>
<th>Hydroelectric EFOF</th>
<th>Hydroelectric EPOF</th>
<th>Hydroelectric EMOF</th>
<th>Hydroelectric EAF</th>
<th>Nuclear EFOF</th>
<th>Nuclear EPOF</th>
<th>Nuclear EMOF</th>
<th>Nuclear EAF</th>
<th>Other EFOF</th>
<th>Other EPOF</th>
<th>Other EMOF</th>
<th>Other EAF</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>7.1%</td>
<td>8.6%</td>
<td>2.5%</td>
<td>81.8%</td>
<td>2.2%</td>
<td>5.2%</td>
<td>1.3%</td>
<td>91.2%</td>
<td>10.8%</td>
<td>0.7%</td>
<td>1.8%</td>
<td>86.7%</td>
<td>1.3%</td>
<td>5.4%</td>
<td>1.6%</td>
<td>91.8%</td>
<td>1.1%</td>
<td>3.8%</td>
<td>0.3%</td>
<td>94.7%</td>
<td>6.6%</td>
<td>7.7%</td>
<td>2.5%</td>
<td>83.2%</td>
</tr>
<tr>
<td>2008</td>
<td>8.2%</td>
<td>6.6%</td>
<td>2.4%</td>
<td>82.8%</td>
<td>2.1%</td>
<td>5.0%</td>
<td>1.4%</td>
<td>91.5%</td>
<td>3.0%</td>
<td>3.7%</td>
<td>1.9%</td>
<td>91.4%</td>
<td>9.8%</td>
<td>1.2%</td>
<td>1.2%</td>
<td>87.9%</td>
<td>1.6%</td>
<td>6.8%</td>
<td>1.7%</td>
<td>89.9%</td>
<td>0.9%</td>
<td>5.2%</td>
<td>0.6%</td>
<td>93.3%</td>
</tr>
<tr>
<td>2009</td>
<td>6.7%</td>
<td>7.1%</td>
<td>3.5%</td>
<td>82.7%</td>
<td>3.4%</td>
<td>5.1%</td>
<td>3.5%</td>
<td>88.0%</td>
<td>1.4%</td>
<td>2.6%</td>
<td>2.0%</td>
<td>94.1%</td>
<td>6.7%</td>
<td>0.3%</td>
<td>1.2%</td>
<td>91.8%</td>
<td>2.1%</td>
<td>8.9%</td>
<td>2.3%</td>
<td>86.7%</td>
<td>4.2%</td>
<td>4.2%</td>
<td>0.7%</td>
<td>90.9%</td>
</tr>
<tr>
<td>2010</td>
<td>7.7%</td>
<td>7.8%</td>
<td>4.2%</td>
<td>80.3%</td>
<td>2.6%</td>
<td>6.0%</td>
<td>3.1%</td>
<td>88.3%</td>
<td>1.9%</td>
<td>2.0%</td>
<td>1.5%</td>
<td>94.5%</td>
<td>4.7%</td>
<td>0.6%</td>
<td>0.8%</td>
<td>93.9%</td>
<td>0.8%</td>
<td>8.4%</td>
<td>2.1%</td>
<td>88.8%</td>
<td>1.9%</td>
<td>4.4%</td>
<td>0.5%</td>
<td>93.1%</td>
</tr>
<tr>
<td>2011</td>
<td>8.5%</td>
<td>8.0%</td>
<td>3.9%</td>
<td>79.6%</td>
<td>2.4%</td>
<td>7.0%</td>
<td>2.1%</td>
<td>88.5%</td>
<td>3.4%</td>
<td>3.4%</td>
<td>1.5%</td>
<td>93.4%</td>
<td>3.8%</td>
<td>0.0%</td>
<td>1.9%</td>
<td>94.3%</td>
<td>3.6%</td>
<td>13.2%</td>
<td>2.0%</td>
<td>83.2%</td>
<td>2.2%</td>
<td>5.8%</td>
<td>1.5%</td>
<td>90.5%</td>
</tr>
<tr>
<td>2012</td>
<td>7.2%</td>
<td>7.6%</td>
<td>5.8%</td>
<td>79.5%</td>
<td>2.5%</td>
<td>6.4%</td>
<td>1.8%</td>
<td>89.3%</td>
<td>2.0%</td>
<td>2.2%</td>
<td>1.5%</td>
<td>94.2%</td>
<td>3.9%</td>
<td>0.1%</td>
<td>1.7%</td>
<td>94.4%</td>
<td>3.5%</td>
<td>4.9%</td>
<td>1.8%</td>
<td>89.0%</td>
<td>1.4%</td>
<td>6.1%</td>
<td>0.9%</td>
<td>91.6%</td>
</tr>
<tr>
<td>2013</td>
<td>8.4%</td>
<td>9.5%</td>
<td>4.4%</td>
<td>77.7%</td>
<td>1.9%</td>
<td>8.5%</td>
<td>2.6%</td>
<td>87.0%</td>
<td>5.1%</td>
<td>3.1%</td>
<td>1.3%</td>
<td>90.5%</td>
<td>5.5%</td>
<td>0.3%</td>
<td>1.4%</td>
<td>92.8%</td>
<td>2.1%</td>
<td>6.5%</td>
<td>1.6%</td>
<td>89.7%</td>
<td>1.2%</td>
<td>5.6%</td>
<td>0.8%</td>
<td>92.4%</td>
</tr>
<tr>
<td>2014</td>
<td>9.8%</td>
<td>8.0%</td>
<td>5.3%</td>
<td>77.0%</td>
<td>2.8%</td>
<td>8.7%</td>
<td>2.1%</td>
<td>86.4%</td>
<td>7.4%</td>
<td>3.1%</td>
<td>1.5%</td>
<td>88.1%</td>
<td>14.0%</td>
<td>0.5%</td>
<td>2.3%</td>
<td>83.2%</td>
<td>2.0%</td>
<td>8.9%</td>
<td>3.0%</td>
<td>86.1%</td>
<td>1.8%</td>
<td>5.9%</td>
<td>0.9%</td>
<td>91.5%</td>
</tr>
<tr>
<td>2015</td>
<td>8.0%</td>
<td>7.0%</td>
<td>4.1%</td>
<td>80.3%</td>
<td>2.1%</td>
<td>8.3%</td>
<td>1.7%</td>
<td>87.9%</td>
<td>3.0%</td>
<td>3.8%</td>
<td>1.8%</td>
<td>91.4%</td>
<td>8.4%</td>
<td>0.4%</td>
<td>2.3%</td>
<td>88.9%</td>
<td>2.3%</td>
<td>7.9%</td>
<td>1.5%</td>
<td>88.3%</td>
<td>1.2%</td>
<td>4.9%</td>
<td>1.3%</td>
<td>92.7%</td>
</tr>
<tr>
<td>2016</td>
<td>8.5%</td>
<td>8.1%</td>
<td>5.2%</td>
<td>77.7%</td>
<td>3.0%</td>
<td>8.6%</td>
<td>1.7%</td>
<td>86.7%</td>
<td>2.3%</td>
<td>4.1%</td>
<td>2.2%</td>
<td>91.4%</td>
<td>5.4%</td>
<td>0.2%</td>
<td>2.5%</td>
<td>91.9%</td>
<td>2.1%</td>
<td>6.7%</td>
<td>2.7%</td>
<td>88.4%</td>
<td>2.1%</td>
<td>4.6%</td>
<td>1.1%</td>
<td>92.2%</td>
</tr>
<tr>
<td>2017</td>
<td>9.8%</td>
<td>8.1%</td>
<td>6.4%</td>
<td>75.7%</td>
<td>1.9%</td>
<td>7.9%</td>
<td>1.6%</td>
<td>89.6%</td>
<td>1.2%</td>
<td>4.0%</td>
<td>1.7%</td>
<td>93.0%</td>
<td>5.8%</td>
<td>0.2%</td>
<td>1.7%</td>
<td>92.3%</td>
<td>2.2%</td>
<td>5.3%</td>
<td>2.9%</td>
<td>89.6%</td>
<td>0.6%</td>
<td>5.0%</td>
<td>0.6%</td>
<td>93.9%</td>
</tr>
<tr>
<td>2018</td>
<td>10.4%</td>
<td>9.4%</td>
<td>6.8%</td>
<td>73.5%</td>
<td>1.5%</td>
<td>7.9%</td>
<td>1.2%</td>
<td>89.4%</td>
<td>2.1%</td>
<td>4.3%</td>
<td>1.5%</td>
<td>92.2%</td>
<td>6.0%</td>
<td>0.3%</td>
<td>2.7%</td>
<td>90.4%</td>
<td>2.2%</td>
<td>5.3%</td>
<td>3.1%</td>
<td>89.4%</td>
<td>0.8%</td>
<td>4.5%</td>
<td>0.5%</td>
<td>94.2%</td>
</tr>
<tr>
<td>2019</td>
<td>9.0%</td>
<td>7.8%</td>
<td>8.3%</td>
<td>74.9%</td>
<td>1.6%</td>
<td>8.0%</td>
<td>1.7%</td>
<td>88.8%</td>
<td>1.5%</td>
<td>5.2%</td>
<td>1.5%</td>
<td>91.8%</td>
<td>6.4%</td>
<td>1.0%</td>
<td>2.3%</td>
<td>90.2%</td>
<td>1.3%</td>
<td>5.4%</td>
<td>3.6%</td>
<td>89.7%</td>
<td>0.9%</td>
<td>4.7%</td>
<td>1.3%</td>
<td>93.1%</td>
</tr>
</tbody>
</table>

Generator Forced Outage Rates

The most fundamental forced outage rate metric is the equivalent demand forced outage rate (EFORd). EFORd is a measure of the probability that a generating unit will fail, either partially or totally, to perform when it is needed to operate. EFORd measures the forced outage rate during periods of demand, and does not include planned or maintenance outages. A period of demand is a period during which a generator is running or needed to run. EFORd calculations use historical performance data, including equivalent forced outage hours, service hours, average forced outage duration, average run time, average time between unit starts, available hours and period hours.91 The EFORd metric includes all forced outages, regardless of the reason for those outages.

The average PJM EFORd in the first nine months of 2019 was 6.8 percent, an increase from 7.3 percent fin the first nine months of 2018. Figure 5-11 shows the average EFORd since 1999 for all units in PJM.92

91 Equivalent forced outage hours are the sum of all forced outage hours in which a generating unit is fully inoperable and all partial forced outage hours in which a generating unit is partially inoperable prorated to represent full hours.

92 The universe of units in PJM changed as the PJM footprint expanded and as units retired from and entered PJM markets. See the 2018 State of the Market Report for PJM, Appendix A: “PJM Geography” for details.
Table 5-26 shows the class average EFORD by unit type.

Table 5-26 EFORD data for different unit types: January through September, 2007 through 2019

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td>8.1%</td>
<td>9.2%</td>
<td>8.3%</td>
<td>9.1%</td>
<td>10.6%</td>
<td>9.5%</td>
<td>10.6%</td>
<td>12.1%</td>
<td>9.4%</td>
<td>10.3%</td>
<td>12.5%</td>
<td>13.3%</td>
<td>12.3%</td>
<td></td>
</tr>
<tr>
<td>Combined Cycle</td>
<td>3.7%</td>
<td>3.5%</td>
<td>4.8%</td>
<td>3.6%</td>
<td>3.1%</td>
<td>2.6%</td>
<td>4.6%</td>
<td>2.8%</td>
<td>3.6%</td>
<td>2.4%</td>
<td>2.2%</td>
<td>2.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combustion Turbine</td>
<td>11.4%</td>
<td>11.2%</td>
<td>8.9%</td>
<td>8.7%</td>
<td>7.5%</td>
<td>6.6%</td>
<td>10.3%</td>
<td>17.2%</td>
<td>9.7%</td>
<td>5.6%</td>
<td>5.3%</td>
<td>6.8%</td>
<td>5.1%</td>
<td></td>
</tr>
<tr>
<td>Diesel</td>
<td>12.3%</td>
<td>10.8%</td>
<td>8.8%</td>
<td>6.7%</td>
<td>9.8%</td>
<td>6.1%</td>
<td>6.1%</td>
<td>15.0%</td>
<td>9.7%</td>
<td>7.3%</td>
<td>7.1%</td>
<td>6.6%</td>
<td>7.0%</td>
<td></td>
</tr>
<tr>
<td>Hydroelectric</td>
<td>1.9%</td>
<td>2.5%</td>
<td>2.7%</td>
<td>1.3%</td>
<td>2.2%</td>
<td>5.1%</td>
<td>3.2%</td>
<td>3.1%</td>
<td>2.9%</td>
<td>3.1%</td>
<td>2.8%</td>
<td>1.7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuclear</td>
<td>1.2%</td>
<td>1.0%</td>
<td>4.3%</td>
<td>2.1%</td>
<td>2.4%</td>
<td>1.5%</td>
<td>1.3%</td>
<td>2.0%</td>
<td>1.2%</td>
<td>2.3%</td>
<td>0.6%</td>
<td>0.8%</td>
<td>1.0%</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>10.8%</td>
<td>15.2%</td>
<td>14.3%</td>
<td>11.9%</td>
<td>13.9%</td>
<td>10.8%</td>
<td>16.6%</td>
<td>14.3%</td>
<td>13.1%</td>
<td>9.7%</td>
<td>13.0%</td>
<td>12.0%</td>
<td>14.9%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>6.8%</td>
<td>7.6%</td>
<td>7.6%</td>
<td>7.1%</td>
<td>7.7%</td>
<td>6.7%</td>
<td>8.1%</td>
<td>9.8%</td>
<td>7.0%</td>
<td>6.5%</td>
<td>6.9%</td>
<td>7.3%</td>
<td>6.8%</td>
<td></td>
</tr>
</tbody>
</table>

Other Forced Outage Rate Metrics

Under the capacity performance modifications to RPM, effective with the 2018/2019 Delivery Year, neither XEFORD nor EFORp are relevant.

Forced Outage Analysis

The MMU analyzed the causes of forced outages for the entire PJM system. The metric used was lost generation, which is the product of the duration of the outage and the size of the outage reduction. Lost generation can be converted into lost system equivalent availability.\(^{93}\) On a system wide basis, the resultant lost equivalent availability from the forced outages is equal to the equivalent forced outage factor (EFOF).

PJM EFOF was 4.4 percent in the first nine months of 2019. This means there was 4.4 percent lost availability because of forced outages. Table 5-27 shows that forced outages for boiler tube leaks, at 15.3 percent of the systemwide EFOF, were the largest single contributor to EFOF.

\(^{93}\) For any unit, lost generation can be converted to lost equivalent availability by dividing lost generation by the product of the generating units' capacity and period hours. This can also be done on a systemwide basis.
<table>
<thead>
<tr>
<th>Category</th>
<th>Combined Cycle</th>
<th>Combustion Turbine</th>
<th>Diesel</th>
<th>Hydroelectric</th>
<th>Nuclear</th>
<th>Other</th>
<th>System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler Tube Leaks</td>
<td>20.6%</td>
<td>7.7%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>6.7%</td>
</tr>
<tr>
<td>Unit Testing</td>
<td>12.1%</td>
<td>3.8%</td>
<td>5.1%</td>
<td>33.9%</td>
<td>33.8%</td>
<td>7.0%</td>
<td>2.2%</td>
</tr>
<tr>
<td>Economic</td>
<td>0.0%</td>
<td>1.8%</td>
<td>1.0%</td>
<td>5.1%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>9.6%</td>
</tr>
<tr>
<td>Boiler Air and Gas Systems</td>
<td>9.4%</td>
<td>0.1%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>9.6%</td>
</tr>
<tr>
<td>Miscellaneous (Pollution Control Equipment)</td>
<td>10.9%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Boiler Fuel Supply from Bunkers to Boiler</td>
<td>7.8%</td>
<td>0.3%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Electrical</td>
<td>3.6%</td>
<td>2.9%</td>
<td>22.9%</td>
<td>3.1%</td>
<td>3.1%</td>
<td>11.4%</td>
<td>1.8%</td>
</tr>
<tr>
<td>Feedwater System</td>
<td>5.0%</td>
<td>1.1%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>16.4%</td>
</tr>
<tr>
<td>Wet Scrubbers</td>
<td>6.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Auxiliary Systems</td>
<td>3.4%</td>
<td>2.3%</td>
<td>12.8%</td>
<td>0.0%</td>
<td>0.1%</td>
<td>6.3%</td>
<td>0.1%</td>
</tr>
<tr>
<td>High Pressure Turbine</td>
<td>0.7%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>1.0%</td>
<td>16.6%</td>
</tr>
<tr>
<td>Miscellaneous (Generator)</td>
<td>2.1%</td>
<td>2.0%</td>
<td>7.1%</td>
<td>4.7%</td>
<td>4.4%</td>
<td>3.5%</td>
<td>1.0%</td>
</tr>
<tr>
<td>Boiler Piping System</td>
<td>2.1%</td>
<td>5.2%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.4%</td>
</tr>
<tr>
<td>Controls</td>
<td>0.5%</td>
<td>3.4%</td>
<td>1.6%</td>
<td>21.3%</td>
<td>2.2%</td>
<td>10.9%</td>
<td>1.9%</td>
</tr>
<tr>
<td>Exciter</td>
<td>0.9%</td>
<td>9.3%</td>
<td>1.0%</td>
<td>0.6%</td>
<td>0.7%</td>
<td>5.4%</td>
<td>0.3%</td>
</tr>
<tr>
<td>Intermediate Pressure Turbine</td>
<td>2.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Valves</td>
<td>0.8%</td>
<td>7.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>1.9%</td>
</tr>
<tr>
<td>Slag and Ash Removal</td>
<td>1.6%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.6%</td>
</tr>
<tr>
<td>Miscellaneous (Steam Turbine)</td>
<td>0.6%</td>
<td>1.9%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>13.8%</td>
</tr>
<tr>
<td>All Other Causes</td>
<td>9.9%</td>
<td>51.3%</td>
<td>39.1%</td>
<td>35.0%</td>
<td>50.6%</td>
<td>24.3%</td>
<td>9.2%</td>
</tr>
<tr>
<td>Total</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>
Performance by Month

On a monthly basis, unit availability as measured by the equivalent availability factor is shown in Figure 5-12.

Figure 5-12 Monthly generator performance factors: 2019