Generation and Transmission Planning¹

Overview

Generation Interconnection Planning

Existing Generation Mix

- As of June 30, 2019, PJM had a total installed capacity of 198,599.2 MW, of which 55,952.4 MW (28.2 percent) are coal fired steam units, 47,591.6 MW (24.0 percent) are combined cycle units and 34,257.6 MW (17.2 percent) are nuclear units. This measure of installed capacity differs from capacity market installed capacity because it includes energy only units, excludes all external units, and uses nameplate values for solar and wind resources.
- The AEP Zone has the most total installed capacity of any PJM zone. Of the 198,599.2 MW of PJM total installed capacity, 31,643.0 MW (15.9 percent) are in the AEP Zone, of which 14,727.8 MW (46.5 percent) are coal fired steam units, 6,990.0 MW (22.1 percent) are combined cycle units and 2,071.0 MW (6.5 percent) are nuclear units.
- Pennsylvania has the most total installed capacity of any PJM state. Of the 198,599.2 MW of installed capacity, 46,077.5 MW (23.2 percent) are in Pennsylvania, of which 9,415.7 MW (20.4 percent) are coal fired steam units, 15,021.5 MW (32.6 percent) are combined cycle units and 9,648.8 MW (20.9 percent) are nuclear units.
- Of the 198,599.2 MW of installed capacity, 74,483.0 MW (37.5 percent) are from units older than 40 years, of which 39,667.2 MW (53.3 percent) are coal fired steam units, 532 MW (0.7 percent) are combined cycle units and 16,044.9 MW (21.5 percent) are nuclear units.

Generation Retirements²

• There are 46,448.9 MW of generation that have been, or are planned to be, retired between 2011 and 2022, of which 32,486.2 MW (69.9 percent) are coal fired steam units. Coal unit retirements are primarily a result of

the inability of coal units to compete with efficient combined cycle units burning low cost gas.

- In the first six months of 2019, 3,225.8 MW of generation retired. The largest generators that retired in the first six months of 2019 were the two 830.0 MW Mansfield coal fired steam units owned by FirstEnergy Corporation and located in the American Transmission Systems Inc. (ATSI) Zone. Of the 3,225.8 MW of generation that retired, 1,660.0 MW (51.5 percent) were located in the ATSI Zone.
- As of June 30 2019, there are 11,852.0 MW of generation that have requested retirement after June 30, 2019, of which 5,131.0 MW (43.3 percent) are located in the ATSI Zone. Of the ATSI generation requesting retirement, 2,960.0 MW (57.7 percent) are coal fired steam units and 2,134.0 MW (41.6 percent) are nuclear units.

Generation Queue³

- There were 114,953.7 total MW in generation queues, in the status of active, under construction or suspended, at the end of 2018. In the first six months of 2019, the AE2 queue window closed, and the AF1 queue window opened. Combined, these queue windows added 32,555.1 MW to the queue. As projects move through the queue process, projects can be removed from the queue due to incomplete or invalid data, withdrawn by the market participant or placed in service. On June 30, 2019, there were 125,757.4 total MW in generation queues, in the status of active, under construction or suspended, an increase of 10,803.7 MW (9.4 percent).
- A significant shift in the distribution of unit types within the PJM footprint continues to develop as natural gas fired units enter the queue and coal fired steam units retire. As of June 30, 2019, there were 45,732.1 MW of natural gas fired capacity active, suspended or under construction in PJM queues (including combined cycle units, CTs, RICE units, and natural gas fired steam units).⁴ As of June 30, 2019, there were only 133.0 MW of coal fired steam capacity active, suspended or under construction in PJM queues.

Totals presented in this section include corrections to historical data and may not match totals presented in previous reports.

See PJM. Planning. "Generator Deactivations," at ">http://www.pim.com/planning/services-requests/gen-deactivations.aspx>">http://www.pim.com/planning/services-requests/gen-deactivations.aspx>">http://www.pim.com/planning/services-requests/gen-deactivations.aspx>">http://www.pim.com/planning/services-requests/gen-deactivations.aspx>">http://www.pim.com/planning/services-requests/gen-deactivations.aspx>">http://www.pim.com/planning/services-requests/gen-deactivations.aspx>">http://www.pim.com/planning/services-requests/gen-deactivations.aspx>">http://www.pim.com/planning/services-requests/gen-deactivations.aspx>">http://www.pim.com/planning/services-requests/gen-deactivations.aspx>">http://www.pim.com/planning/services-requests/gen-deactivations.aspx>">http://www.pim.com/planning/services-requests/gen-deactivations.aspx>">http://www.pim.com/planning/services-requests/gen-deactivations.aspx>">http://www.pim.com/planning/services-requests/gen-deactivations.aspx>">http://www.pim.com/planning/services-requests/gen-deactivations.aspx>">http://www.pim.com/planning/services-requests/gen-deactivations.aspx>">http://www.pim.com/planning/services-requests/gen-deactivations.aspx>">http://www.pim.com/planning/services-requests/gen-deactivations.aspx>">http://www.pim.com/planning/services-requests/gen-deactivations.aspx>">http://www.pim.com/planning/services-requests/gen-deactivations.aspx>">http://www.pim.com/planning/services-requests/gen-deactivations.aspx>">http://www.pim.com/gen/deactivations.aspx

³ See PJM. Planning. "New Services Queue," at <https://www.pjm.com/planning/services-requests/interconnection-queues.aspx>.

⁴ The unit type RICE refers to Reciprocating Internal Combustion Engines.

- As of June 30, 2019, 4,500 projects, representing 560,874.6 MW, have entered the queue process since its inception in 1998. Of those, 854 projects, representing 66,918.4 MW, went into service. Of the projects that entered the queue process, 2,530 projects, representing 368,198.8 MW (65.6 percent of the MW) withdrew prior to completion. Such projects may create barriers to entry for projects that would otherwise be completed by taking up queue positions, increasing interconnection costs and creating uncertainty.
- As of June 30, 2019, 125,757.4 MW of capacity were in generation request queues in the status of active, under construction or suspended. Of the total 125,757.4 MW in the queue, 56,685.8 MW (45.1 percent) have reached at least the system impact study (SIS) milestone and 69,071.6 MW (54.9 percent) have not received a completed SIS. Based on historical completion rates, (applying the unit type specific completion rates for those projects that have reached the system impact study, facility study agreement or construction service agreement milestone, and using the overall completion rates for those projects that have not yet reached the system impact study milestone), 33,654.7 MW of new generation in the queue are expected to go into service.

Regional Transmission Expansion Plan (RTEP)

Backbone Facilities

• There are currently six backbone projects under development, the Surry-Skiffes Creek 500kV Line, the Loudoun-Brambleton 500kV Line, the conversion of the Marion-Bayonne and Bayway-Linden lines from 138 kV to 345 kV, the conversion of the Robinson Park-Sorenson lines to double circuit 345kV and the Meadow Lake-Reynolds 345kV Line rebuild.⁵

Market Efficiency Process

• PJM's first market efficiency analysis was performed in 2013, prior to Order 1000. This analysis evaluated the reasons for congestion on 25

flowgates.⁶ The proposal window was open from August 12, 2013, through September 26, 2013. PJM received 38 proposals from six entities. One project was approved by the PJM Board.

- Through June 30, 2019, PJM has completed two market efficiency cycles under Order No. 1000. In the first cycle, PJM received 93 proposals for 57 identified sources of congestion. In the second cycle, PJM received 96 proposals for four identified sources of congestion. The proposal window for 2018/2019 opened on November 1, 2018, and closed on February 28, 2019. PJM received 22 proposals for one identified source of congestion.
- Approved market efficiency projects periodically undergo a reevaluation process to ensure that the benefit/cost ratio continues to meet the 1.25:1 threshold. The Transource AP-South project was reevaluated in September 2017, February 2018, and again in September 2018. The project exceeded the 1.25:1 threshold in all reevaluations, using PJM's flawed approach.
- There are significant issues with PJM's benefit/cost analysis that should be addressed prior to approval of additional projects. PJM's benefit/cost analysis does not correctly account for the costs of increased congestion associated with market efficiency projects.

PJM MISO Interregional Targeted Market Efficiency Process (TMEP)

• The first Targeted Market Efficiency Process (TMEP) analysis occurred in 2017 and included the investigation of congestion on 50 market to market flowgates. The study resulted in the evaluation of 13 potential upgrades, resulting in the recommendation of five TMEP projects. The five projects address \$59.0 million in historical congestion, with a TMEP benefit of \$99.6 million. The projects have a total cost of \$20.0 million, with a 5.0 average benefit/cost ratio. PJM and MISO presented the five recommended projects to their boards in December, 2017, and both boards approved all five projects.⁷

⁵ See PJM. "2017 RTEP Process Scope and Input Assumptions White Paper," at 25. ">https://www.pjm.com/-/media/library/reports-notices/2017-rtep/20170731-rtep-input-assumptions-and-scope-whitepaper.ashx?la=en>.

⁶ Historical congestion drivers are identified using the historical congestion tables presented in the 2018 State of the Market Report for PJM, Section 11: Congestion and Marginal Losses, historical analysis of real-time constraints, the NERC Book of Flowgates and PROMOD simulations.

⁷ See PJM. "MISO PJM IPSAC," (January 12, 2018) <http://www.pjm.com/-/media/committees-groups/stakeholder-meetings/ ipsac/20180112/20180112-ipsac-presentation.ashx>.

• The 2018 TMEP analysis included the investigation of congestion on 61 market to market flowgates. The study resulted in the evaluation of 19 potential upgrades, resulting in the recommendation of two TMEP projects. The two projects address \$25.0 million in historical congestion, with a TMEP benefit of \$31.9 million. The projects have a total cost of \$4.5 million, with a 7.1 average benefit/cost ratio. PJM and MISO presented the two recommended projects to their boards in December, 2018, and both boards approved the projects.⁸

Supplemental Transmission Projects

- Supplemental projects are asserted to be "transmission expansions or enhancements that are not required for compliance with PJM criteria and are not state public policy projects according to the PJM Operating Agreement. These projects are used as inputs to RTEP models, but are not required for reliability, economic efficiency or operational performance criteria, as determined by PJM."⁹ Supplemental projects are exempt from the competitive planning process.
- The average number of supplemental projects in each expected in service year increased by 615.0 percent, from 20 for years 1998 through 2007 (pre Order No. 890) to 143 for years 2008 through 2019 (post Order 890).
- The process for designating projects as supplemental projects should be reviewed and modified to ensure that the supplemental project designation is not used to exempt transmission projects from a transparent, robust and clearly defined mechanism to permit competition to build the project or to effectively replace the RTEP process.

End of Life Transmission Projects

• An end of life transmission project is a project submitted for the purpose of replacing existing infrastructure that is at, or is approaching, the end of its useful life. End of life transmission projects fall under the Transmission Owner Form 715 Planning Criteria, and are currently exempt from the competitive planning process.¹⁰ End of life transmission projects are already included in the supplemental projects totals or, if included in the transmission owners' reliability plan, will be included in the baseline project list as a reliability criteria project.

• End of life transmission projects should be included in the RTEP process and should be subject to a transparent, robust and clearly defined mechanism to permit competition to build the project.

Board Authorized Transmission Upgrades

• The Transmission Expansion Advisory Committee (TEAC) reviews internal and external proposals to improve transmission reliability throughout PJM. These proposals, which include reliability baseline, network, market efficiency and targeted market efficiency projects, but exclude supplemental and end of life projects, are periodically presented to the PJM Board of Managers for authorization.¹¹ On February 12, 2019, the PJM Board of Managers authorized an additional \$272.0 million in transmission upgrades and additions. As of June 30, 2019, the PJM Board has approved \$38.5 billion in system enhancements since 1999.

Transmission Competition

- The MMU makes several recommendations related to the competitive transmission planning process. The recommendations include improved process transparency, incorporation of competition between transmission and generation alternatives and the removal of barriers to competition from nonincumbent transmission. These recommendations would help ensure that the process is an open and transparent process that results in the most cost effective solutions.
- On May 24, 2018, the PJM Markets and Reliability Committee (MRC) approved a motion that required PJM, with input from the MMU, to develop a comparative framework to evaluate the quality and effectiveness of binding cost containment proposals versus proposals without cost containment provisions.

⁸ See PJM. "MISO PJM IPSAC," (January 18, 2019) https://www.pjm.com/-/media/committees-groups/stakeholder-meetings/ ipsac/20190118/20190118-ipsac-presentation.ashx>.

⁹ See PJM. "Transmission Construction Status," (Accessed on June 30, 2019) http://www.pjm.com/planning/rtep-upgrades-status/construct-status.aspx.

¹⁰ See PJM. Operating Agreement Schedule 6 § 1.5.8(o).

¹¹ Supplemental Projects, including the end of life subset of supplemental projects, do not require PJM Board of Managers authorization.

Qualifying Transmission Upgrades (QTU)

- A Qualifying Transmission Upgrade (QTU) is an upgrade to the transmission system that increases the Capacity Emergency Transfer Limit into an LDA and can be offered into capacity auctions as capacity.
- QTU projects are submitted and tracked through the PJM queue.¹² A total of 51 QTU projects have entered the queue since 2007. Of the 51 submitted QTU projects, 38 projects (74.5 percent) have been withdrawn, six (11.8 percent) are in service and seven (13.7 percent) are currently in active development.

Transmission Facility Outages

- PJM maintains a list of reportable transmission facilities. When the reportable transmission facilities need to be taken out of service, PJM transmission owners are required to report planned transmission facility outages as early as possible. PJM processes the transmission facility outage requests according to rules in PJM's Manual 3 to decide if the outage is on time or late and whether or not they will allow the outage.¹³
- There were 22,091 transmission outage requests submitted in the 2018/2019 planning period. Of the requested outages, 77.0 percent of the requested outages were planned for less than or equal to five days and 7.7 percent of requested outages were planned for greater than 30 days. Of the requested outages, 47.3 percent were late according to the rules in PJM's Manual 3.

Recommendations

The MMU recommends improvements to the planning process:

Generation Retirements

• The MMU recommends that the question of whether Capacity Injection Rights (CIRs) should persist after the retirement of a unit, or the conversion from Capacity Performance (CP) to energy only status, be addressed. The rules need to ensure that incumbents cannot exploit control of CIRs to block or postpone entry of competitors.¹⁴ (Priority: Low. First reported 2013. Status: Not adopted.)

• The MMU recommends that rules be implemented to ensure that CIRs are terminated within one year if units cannot qualify to be capacity resources and, if requested, after one CP must offer exception to permit the issue of CP status to be addressed. (Priority: Low. First reported 2018. Status: Not adopted.)

Generation Queue

- The MMU recommends that barriers to entry be addressed in a timely manner in order to help ensure that the capacity market will result in the entry of new capacity to meet the needs of PJM market participants and reflect the uncertainty and resultant risks in the cost of new entry used to establish the capacity market demand curve in RPM. (Priority: Low. First reported 2012. Status: Not adopted.)
- The MMU recommends improvements in queue management including that PJM establish a review process to ensure that projects are removed from the queue if they are not viable, as well as a process to allow commercially viable projects to advance in the queue ahead of projects which have failed to make progress, subject to rules to prevent gaming. (Priority: Medium. First reported 2013. Status: Partially adopted.)
- The MMU recommends continuing analysis of the study phase of PJM's transmission planning to reduce the need for postponements of study results, to decrease study completion times, and to improve the likelihood that a project at a given phase in the study process will successfully go into service. (Priority: Medium. First reported 2014. Status: Partially adopted.)
- The MMU recommends outsourcing interconnection studies to an independent party to avoid potential conflicts of interest. Currently, these studies are performed by incumbent transmission owners under PJM's direction. This creates potential conflicts of interest, particularly when transmission owners are vertically integrated and the owner of

¹² See PJM. Planning. "New Services Queue," at <https://www.pjm.com/planning/services-requests/interconnection-queues.aspx> 13 See PJM. "PJM Manual 03: Transmission Operations," Rev. 55 (May 31, 2019).

¹⁴ See "Comments of the Independent Market Monitor for PJM," Docket No. ER12-1177-000 (March 12, 2012) http://www.monitoringanalytics.com/Filings/2012/IMM_Comments_ER12-1177-000_20120312.PDF.

transmission also owns generation. (Priority: Low. First reported 2013. Status: Not adopted.)

Market Efficiency Process

- The MMU recommends that PJM modify the rules governing benefit/cost analysis, the evaluation process for selecting among competing market efficiency projects and cost allocation for economic projects in order to ensure that all costs, including increased congestion costs and the risk of project cost increases, in all zones are included. (Priority: Medium. First reported 2018. Status: Not adopted.)
- The MMU recommends that PJM modify the rules governing the market efficiency process benefit/cost analysis so that competing projects with different in service dates are evaluated on a symmetric, comparable basis. (Priority: Medium. First reported 2018. Status: Not adopted.)

Transmission Competition

- The MMU recommends, to increase the role of competition, that the exemption of supplemental projects from the Order No. 1000 competitive process be terminated and that the basis for all such exemptions be reviewed and modified to ensure that the supplemental project designation is not used to exempt transmission projects from a transparent, robust and clearly defined mechanism to permit competition to build such projects or to effectively replace the RTEP process. (Priority: Medium. First reported 2017. Status: Not adopted.)
- The MMU recommends, to increase the role of competition, that the exemption of end of life projects from the Order No. 1000 competitive process be terminated and that end of life transmission projects should be included in the RTEP process and should be subject to a transparent, robust and clearly defined mechanism to permit competition to build such projects. (Priority: Medium. First reported Q1, 2019. Status: Not adopted.)
- The MMU recommends that PJM enhance the transparency and queue management process for nonincumbent transmission investment. Issues related to data access and complete explanations of cost impacts should

be addressed. The goal should be to remove barriers to competition from nonincumbent transmission providers. (Priority: Medium. First reported 2015. Status: Not adopted.)

- The MMU recommends that PJM continue to incorporate the principle that the goal of transmission planning should be the incorporation of transmission investment decisions into market driven processes as much as possible. (Priority: Low. First reported 2001. Status: Not adopted.)
- The MMU recommends the creation of a mechanism to permit a direct comparison, or competition, between transmission and generation alternatives, including which alternative is less costly and who bears the risks associated with each alternative. (Priority: Low. First reported 2013. Status: Not adopted.)
- The MMU recommends that PJM establish fair terms of access to rights of way and property, such as at substations, in order to remove any barriers to entry and permit competition between incumbent transmission providers and nonincumbent transmission providers in the RTEP. (Priority: Medium. First reported 2014. Status: Not adopted.)
- The MMU recommends that rules be implemented to permit competition to provide financing for transmission projects. This competition could reduce the cost of capital for transmission projects and significantly reduce total costs to customers. (Priority: Low. First reported 2013. Status: Not adopted.)
- The MMU recommends that rules be implemented to require that project cost caps on new transmission projects be part of the evaluation of competing projects. (Priority: Medium. First reported 2015. Status: Not adopted.)

Cost Allocation

• The MMU recommends consideration of changing the minimum distribution factor in the allocation from 0.01 to 0.00 and adding a threshold minimum usage impact on the line.¹⁵ (Priority: Medium. First reported 2015. Status: Not adopted.)

¹⁵ See the 2015 State of the Market Report for PJM, Volume 2, Section 12: Generation and Transmission Planning, at p. 463, Cost Allocation Issues.

Transmission Facility Outages

- The MMU recommends that PJM reevaluate all transmission outage tickets as on time or late as if they were new requests when an outage is rescheduled and apply the standard rules for late submissions to any such outages. (Priority: Low. First reported 2014. Status: Not adopted.)
- The MMU recommends that PJM draft a clear definition of the congestion analysis required for transmission outage requests to include in Manual 3 after appropriate review. (Priority: Low. First reported 2015. Status: Not adopted.)
- The MMU recommends that PJM modify the rules to reduce or eliminate the approval of late outage requests submitted or rescheduled after the FTR auction bidding opening date. (Priority: Low. First reported 2015. Status: Not adopted.)
- The MMU recommends that PJM not permit transmission owners to divide long duration outages into smaller segments to avoid complying with the requirements for long duration outages. (Priority: Low. First reported 2015. Status: Not adopted.)

Conclusion

The goal of PJM market design should be to enhance competition and to ensure that competition is the driver for all the key elements of PJM markets. But transmission investments have not been fully incorporated into competitive markets. The construction of new transmission facilities has significant impacts on the energy and capacity markets. But when generating units retire or load increases, there is no market mechanism in place that would require direct competition between transmission and generation to meet loads in the affected area. In addition, despite FERC Order No. 1000, there is not yet a transparent, robust and clearly defined mechanism to permit competition to build transmission projects, to ensure that competitors provide a total project cost cap, or to obtain least cost financing through the capital markets.

The addition of a planned transmission project changes the parameters of the capacity auction for the area, changes the amount of capacity needed in the

area, changes the capacity market supply and demand fundamentals in the area and may effectively forestall the ability of generation to compete. But there is no mechanism to permit a direct comparison, let alone competition, between transmission and generation alternatives. There is no mechanism to evaluate whether the generation or transmission alternative is less costly, whether there is more risk associated with the generation or transmission alternatives, or who bears the risks associated with each alternative. Creating such a mechanism should be an explicit goal of PJM market design.

Managing the generation queues is a highly complex process. The PJM queue evaluation process has been substantially improved in recent years and it is more efficient and effective as a result. The PJM queue evaluation process should continue to be improved to help ensure that barriers to competition for new generation investments are not created. Issues that need to be addressed include the ownership rights to CIRs, whether transmission owners should perform interconnection studies, and improvements in queue management to ensure that projects are removed from the queue if they are not viable, as well as a process to allow commercially viable projects to advance in the queue ahead of projects which have failed to make progress.

The PJM rules for competitive transmission development through the RTEP should build upon FERC Order No. 1000 to create real competition between incumbent transmission providers and nonincumbent transmission providers. The ability of transmission owners to block competition for supplemental projects and end of life projects and reasons for that policy should be reevaluated. PJM should enhance the transparency and queue management process for nonincumbent transmission investment. Issues related to data access and complete explanations of cost impacts should be addressed. The goal should be to remove barriers to competition from nonincumbent transmission. Another element of opening competition would be to consider transmission substations. In many cases, the land acquired included property intended to support future expansion of the grid. Incumbents have included the costs of the property in their rate base, paid for by customers. Because PJM now has the responsibility for planning the development of the grid under its

RTEP process, property bought to facilitate future expansion should be a part of the RTEP process and be made available to all providers on equal terms.

The process for determining the reasonableness or purpose of supplemental transmission projects that are asserted to be not needed for reliability, economic efficiency or operational performance as defined under the RTEP process needs additional oversight and transparency. If there is a need for a supplemental project, that need should be clearly defined and there should be a transparent, robust and clearly defined mechanism to permit competition to build the project. If there is no defined need for of a supplemental project for reliability, economic efficiency or operational performance then the project should not be included in rates.

The inclusion of market efficiency transmission projects in the transmission planning process, in addition to reliability projects, effectively results in direct competition between generation and transmission to address congestion issues in the wholesale power market, including congestion in the energy and capacity markets but with a bias towards the transmission option. The role of the market efficiency process and its impact on competition should be more thoroughly evaluated. But PJM fails to explicitly address this fact in the design of the market efficiency process. While the market efficiency process and metrics require modification, for example to ensure that all congestion is measured, the role of the market efficiency process and its impact on competition should also be more thoroughly evaluated. Building transmission under cost of service regulation already provides a significant competitive advantage to transmission over generation which is built entirely based on market prices and for which investors take the risks. The risks of cost increases for transmission projects should also be incorporated in the cost benefit analysis.

There are significant issues with PJM's benefit/cost analysis that should be addressed prior to approval of additional projects. The current benefit/cost analysis for a regional project, for example, explicitly and incorrectly ignores the increased congestion in zones that results from an RTEP project when calculating the energy market benefits. All costs should be included in all zones and LDAs. The definition of benefits should also be reevaluated.

The benefit/cost analysis should also account for the fact that the transmission project costs are not subject to cost caps and may exceed the estimated costs by a wide margin. When actual costs exceed estimated costs, the cost benefit analysis is effectively meaningless and low estimated costs may result in inappropriately favoring transmission projects over market generation projects. The risk of cost increases for transmission projects should be incorporated in the cost benefit analysis.

The current rules governing the benefit/cost analysis evaluate competing projects with different in service dates on an asymmetric basis. Under the current rules, projects are evaluated on a present value, benefit/cost basis over a 15 year service horizon, starting with the in service date of the project. A better approach would be to establish a common end date for all evaluated competing projects so that the minimum included years for any evaluated project is 15 years. This means that if there were an RTEP year zero project and a RTEP year +2 project competing, the benefit/cost ratio analysis would include the benefits and costs for both projects for every year from RTEP year zero to RTEP+16. Under this approach all projects would be evaluated over an identical term rather than an artificially truncated term and all projects would be evaluated on a present value basis at year zero.¹⁶

There are currently no market incentives for transmission owners to submit and complete transmission outages in a timely and efficient manner. Requiring transmission owners to pay does not create an effective incentive when those payments are passed through to transmission customers. The process for the submission of planned transmission outages needs to be carefully reviewed and redesigned to limit the ability of transmission owners to submit transmission outages that are late for FTR auction bid submission dates and are late for the Day-Ahead Energy Market. The submission of late transmission outages can inappropriately affect market outcomes when market participants do not have the ability to modify market bids and offers.

¹⁶ See "Comments of the Independent Market Monitor for PJM," (January 11, 2019) http://www.monitoringanalytics.com/Filings/2019/IMM_Comments_Docket_No_ER19-80_20190111.pdf>.

Generation Interconnection Planning

Existing Generation Mix

Table 12-1 shows the existing PJM capacity by control zone and unit type.¹⁷ As of June 30, 2019, PJM had an installed capacity of 198,599.2 MW, of which 55,952.4 MW (28.2 percent) are coal fired steam units, 47,591.6 MW (24.0 percent) are combined cycle units and 34,257.6 MW (17.2 percent) are nuclear units. This measure of installed capacity differs from capacity market installed capacity because it includes energy only units, excludes all external units, and uses nameplate values for solar and wind resources.

The AEP Zone has the most total installed capacity of any PJM zone. Of the 198,599.2 MW of PJM total installed capacity, 31,643.0 MW (15.9 percent) are in the AEP Zone, of which 14,727.8 MW (46.5 percent) are coal fired steam units, 6,990.0 MW (22.1 percent) are combined cycle units and 2,071.0 MW (6.5 percent) are nuclear units.

			CT -				Hydro -	Hydro -		RICE -					Steam -				
		Combined	Natural	CT -	CT -	Fuel	Pumped	Run of		Natural	RICE -	RICE -		Steam -	Natural	Steam -	Steam -		
Zone	Battery	Cycle	Gas	0il	Other	Cell	Storage	River	Nuclear	Gas	Oil	Other	Solar	Coal	Gas	Oil	Other	Wind	Total
AECO	0.0	901.9	544.7	0.0	26.0	1.6	0.0	0.0	0.0	0.0	4.0	10.6	59.4	458.9	0.0	0.0	0.0	7.5	2,014.5
AEP	6.0	6,990.0	3,661.2	0.0	21.0	0.0	66.0	486.9	2,071.0	0.0	0.0	20.4	14.7	14,727.8	738.0	0.0	50.0	2,790.0	31,643.0
APS	80.4	2,179.0	1,223.3	0.0	2.0	0.0	0.0	129.2	0.0	0.0	29.6	18.3	55.1	5,409.0	0.0	0.0	0.0	1,191.5	10,317.4
ATSI	0.0	2,150.5	958.0	0.0	659.4	0.0	0.0	0.0	2,134.0	0.0	18.5	46.1	0.0	3,734.0	325.0	0.0	0.0	0.0	10,025.5
BGE	0.0	0.0	500.1	0.0	248.8	0.0	0.0	0.4	1,716.0	0.0	0.0	7.2	1.1	1,713.0	240.5	397.0	57.0	0.0	4,881.1
ComEd	148.5	2,621.1	6,969.3	0.0	226.2	0.0	0.0	0.0	10,473.5	0.0	0.0	38.3	9.0	4,124.1	1,326.0	0.0	0.0	3,584.9	29,520.9
DAY	0.0	0.0	1,344.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	34.0	4.5	1.1	0.0	0.0	0.0	0.0	0.0	1,384.1
DEOK	20.0	522.2	598.0	0.0	56.0	0.0	0.0	112.0	0.0	0.0	0.0	4.8	0.0	1,857.0	47.0	0.0	0.0	0.0	3,217.0
DLCO	0.0	244.0	0.0	0.0	15.0	0.0	0.0	6.3	1,777.0	0.0	0.0	0.0	0.0	565.0	0.0	0.0	0.0	0.0	2,607.3
Dominion	0.0	9,099.6	3,835.3	0.0	266.4	0.0	3,003.0	586.3	3,581.3	0.0	39.0	112.8	722.1	4,122.1	35.0	1,586.0	368.4	208.0	27,565.3
DPL	0.0	1,742.5	978.2	0.0	478.2	30.0	0.0	0.0	0.0	0.0	88.0	14.1	225.4	410.0	882.0	153.0	0.0	0.0	5,001.4
EKPC	0.0	0.0	774.0	0.0	0.0	0.0	0.0	70.0	0.0	0.0	0.0	0.0	0.0	1,687.0	0.0	0.0	0.0	0.0	2,531.0
JCPL	40.0	2,402.5	531.1	0.0	232.0	0.4	400.0	0.0	0.0	0.0	0.0	16.1	287.4	0.0	0.0	0.0	10.0	0.0	3,919.6
Met-Ed	0.0	2,101.0	2.0	0.0	398.5	0.0	0.0	19.0	805.0	0.0	0.0	33.4	0.0	115.0	0.0	0.0	60.0	0.0	3,533.9
OVEC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2,388.8	0.0	0.0	0.0	0.0	2,388.8
PECO	0.0	4,089.0	50.8	0.0	834.0	0.0	1,070.0	572.0	4,546.8	0.0	2.0	0.9	3.0	3.3	762.0	0.0	163.0	0.0	12,096.8
PENELEC	28.4	850.0	350.5	0.0	57.0	0.0	513.0	77.8	0.0	0.0	128.2	17.8	0.0	6,141.5	610.0	0.0	42.0	1,028.8	9,845.0
Рерсо	0.0	1,729.5	764.2	0.0	308.0	0.0	0.0	0.0	0.0	0.0	0.0	11.1	0.0	2,433.0	1,164.1	0.0	52.0	0.0	6,461.9
PPL	20.0	5,558.5	252.0	0.0	150.1	0.0	0.0	706.6	2,520.0	0.0	17.0	24.7	15.0	2,590.9	2,449.0	0.0	29.0	216.5	14,549.3
PSEG	5.7	4,410.3	1,039.2	0.0	0.0	0.0	0.0	5.0	3,493.0	0.0	0.0	15.0	205.6	0.0	3.0	0.0	179.1	0.0	9,355.8
XIC	0.0	0.0	858.6	0.0	0.0	0.0	0.0	269.1	1,140.0	0.0	0.0	0.0	0.0	3,472.0	0.0	0.0	0.0	0.0	5,739.7
Total	349.0	47,591.6	25,235.0	0.0	3,978.6	32.0	5,052.0	3,040.6	34,257.6	0.0	360.3	396.0	1,598.9	55,952.4	8,581.6	2,136.0	1,010.5	9,027.2	198,599.2

Table 12-1 Existing PJM capacity: June 30, 2019 (By zone and unit type (MW))¹⁸

18 The capacity described in this section refers to all capacity in PJM at the summer installed capacity rating, regardless of whether the capacity entered the RPM Auction. This table previously included external units.

¹⁷ The unit type RICE refers to Reciprocating Internal Combustion Engines.

Table 12-2 shows the installed capacity by state for each fuel type. Pennsylvania has the most total installed capacity of any PJM state. Of the 198,599.2 MW of installed capacity, 46,077.5 MW (23.2 percent) are in Pennsylvania, of which 9,415.7 MW (20.4 percent) are coal fired steam units, 15,021.5 MW (32.6 percent) are combined cycle units and 9,648.8 MW (20.9 percent) are nuclear units.

		-	-																
			CT -				Hydro -	Hydro -		RICE -					Steam -				
		Combined	Natural	CT -	CT -	Fuel	Pumped	Run of		Natural	RICE -	RICE -		Steam -	Natural	Steam -	Steam -		
State	Battery	Cycle	Gas	Oil	Other	Cell	Storage	River	Nuclear	Gas	Oil	Other	Solar	Coal	Gas	Oil	Other	Wind	Total
DC	0.0	19.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	19.5
DE	0.0	742.5	325.5	0.0	116.3	30.0	0.0	0.0	0.0	0.0	0.0	8.1	0.0	410.0	882.0	0.0	0.0	0.0	2,514.4
IL	148.5	2,621.1	6,969.3	0.0	226.2	0.0	0.0	0.0	10,473.5	0.0	0.0	38.3	9.0	4,124.1	1,326.0	0.0	0.0	3,584.9	29,520.9
IN	0.0	1,835.0	441.4	0.0	0.0	0.0	0.0	8.2	0.0	0.0	0.0	3.2	10.1	3,923.8	0.0	0.0	0.0	2,023.2	8,244.9
KY	0.0	0.0	1,618.1	0.0	0.0	0.0	0.0	136.0	0.0	0.0	0.0	0.0	0.0	1,687.0	278.0	0.0	0.0	0.0	3,719.1
MD	20.0	2,710.0	1,917.0	0.0	572.7	0.0	0.0	0.4	1,716.0	0.0	76.0	24.3	251.6	4,386.0	1,404.6	550.0	109.0	295.0	14,032.6
MI	0.0	1,200.0	0.0	0.0	4.8	0.0	0.0	11.8	2,071.0	0.0	0.0	3.2	4.6	0.0	0.0	0.0	0.0	0.0	3,295.4
NC	0.0	165.0	0.0	0.0	0.0	0.0	0.0	315.0	0.0	0.0	18.0	0.0	432.7	115.5	0.0	0.0	0.0	208.0	1,254.2
NJ	45.7	7,714.7	2,115.0	0.0	258.0	2.0	400.0	5.0	3,493.0	0.0	4.0	41.7	552.4	458.9	3.0	0.0	189.1	7.5	15,289.9
OH	24.0	6,627.7	4,201.2	0.0	731.6	0.0	0.0	200.0	2,134.0	0.0	52.5	55.4	1.1	12,423.8	372.0	0.0	0.0	766.8	27,590.1
PA	49.9	15,021.5	1,542.7	0.0	1,454.6	0.0	1,583.0	1,445.7	9,648.8	0.0	176.8	95.1	18.0	9,415.7	3,821.0	0.0	294.0	1,510.7	46,077.5
TN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0	0.0	50.0
VA	0.0	8,934.6	4,172.3	0.0	603.4	0.0	3,069.0	460.1	3,581.3	0.0	33.0	118.8	319.4	3,001.6	495.0	1,586.0	368.4	0.0	26,742.9
WV	60.9	0.0	1,073.9	0.0	11.0	0.0	0.0	189.3	0.0	0.0	0.0	8.0	0.0	12,534.0	0.0	0.0	0.0	631.1	14,508.2
XIC	0.0	0.0	858.6	0.0	0.0	0.0	0.0	269.1	1,140.0	0.0	0.0	0.0	0.0	3,472.0	0.0	0.0	0.0	0.0	5,739.7
Total	349.0	47,591.6	25,235.0	0.0	3,978.6	32.0	5,052.0	3,040.6	34,257.6	0.0	360.3	396.0	1,598.9	55,952.4	8,581.6	2,136.0	1,010.5	9,027.2	198,599.2

Table 12-2 Existing PJM capacity: June 30, 2019 (By state and unit type (MW))

Table 12-3 and Figure 12-1 show the age of existing PJM generators, by unit type, as of June 30, 2019. Of the 198,599.2 MW of installed capacity, 74,483.0 MW (37.5 percent) are from units older than 40 years, of which 39,667.2 MW (53.3 percent) are coal fired steam units, 532 MW (0.7 percent) are combined cycle units and 16,044.9 MW (21.5 percent) are nuclear units.

Table 12-3 PJM capacity (MW) by unit type and age (years): June 30, 2019

			CT -				Hydro -	Hydro -		RICE -					Steam -				
		Combined	Natural	CT -	CT -	Fuel	Pumped	Run of		Natural	RICE -	RICE -		Steam -	Natural	Steam -	Steam -		
Age (years)	Battery	Cycle	Gas	Oil	Other	Cell	Storage	River	Nuclear	Gas	Oil	Other	Solar	Coal	Gas	Oil	Other	Wind	Total
Less than 20	349.0	42,616.1	19,109.7	0.0	784.6	32.0	0.0	297.2	0.0	0.0	149.8	341.6	1,598.9	3,655.0	82.0	0.0	97.4	9,027.2	78,140.4
20 to 40	0.0	4,443.5	5,423.1	0.0	231.6	0.0	3,003.0	427.2	18,212.7	0.0	37.0	54.4	0.0	12,630.2	600.0	0.0	913.1	0.0	45,975.8
40 to 60	0.0	532.0	702.2	0.0	2,962.4	0.0	2,049.0	340.0	16,044.9	0.0	173.5	0.0	0.0	36,156.4	6,391.1	2,136.0	0.0	0.0	67,487.5
Greater than 60	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1,976.2	0.0	0.0	0.0	0.0	0.0	3,510.8	1,508.5	0.0	0.0	0.0	6,995.5
Total	349.0	47,591.6	25,235.0	0.0	3,978.6	32.0	5,052.0	3,040.6	34,257.6	0.0	360.3	396.0	1,598.9	55,952.4	8,581.6	2,136.0	1,010.5	9,027.2	198,599.2

Figure 12-1 PJM capacity (MW) by age (years): June 30, 2019

Generation Retirements¹⁹

Generating units generally plan to retire when they are not economic and do not expect to be economic. The MMU performs an analysis of the economics of all units that plan to retire in order to verify that the units are not economic and there is no potential exercise of market power through physical withholding that could advantage the owner's portfolio.²⁰ The definition of economic is that unit net revenues are greater than or equal to the unit's avoidable or going forward costs.

PJM does not have the authority to order generating plants to continue operating. PJM's responsibility is to ensure system reliability. When a unit retirement creates reliability issues based on existing and planned generation

facilities and on existing and planned transmission facilities, PJM identifies transmission solutions.²¹

Rules that preserve the Capacity Injection Rights (CIRs) associated with retired units, and with the conversion from Capacity Performance (CP) to energy only status, impose significant costs on new entrants. Currently, CIRs persist for one year if unused, and they can be further extended, at no cost, if assigned to a new project in the interconnection queue at the same point of interconnection.²² There are currently no rules governing the retention of CIRs when units want to convert to energy only status or require time to upgrade to retain CP status. The rules governing conversion or upgrades should be the same as the rules governing retired units. Reforms that require the holders of CIRs to use or lose them, and/or impose costs to holding or transferring them, could make new entry appropriately more attractive. The economic and policy rationale for extending CIRs for inactive units is not clear. Incumbent providers receive a significant advantage simply by imposing on new entrants the entire cost of system upgrades needed to accommodate new entrants. The policy question of whether CIRs should persist after the retirement of a unit should be addressed. Even if the policy treatment of such CIRs remains unchanged, the rules need to ensure that incumbents cannot exploit control of CIRs to block or postpone entry of competitors.

In May 2012, PJM stakeholders (through the Interconnection Process Senior Task Force (IPSTF)) modified the rules to reduce the length of time for which CIRs are retained by the current owner after unit retirements from three years to one.²³ The MMU recognized the progress made in this rule change, but it did not fully address the issues. The MMU recommends that the question of whether CIRs should persist after the retirement of a unit, or conversion from CP to energy only status, be addressed. The rules need to ensure that incumbents cannot exploit control of CIRs to block or postpone entry of competitors.²⁴

¹⁹ See PJM. Planning. "Generator Deactivations," at http://www.pjm.com/planning/services-requests/gen-deactivations.aspx>. 20 See OATI Section V and Attachment M-Appendix § IV.

²¹ See PJM. "Explaining Power Plant Retirements in PJM," at <http://learn.pjm.com/three-priorities/planning-for-the-future/explaining-power-plant-retirements.aspx>.

²² See OATT § 230.3.3.

²³ See PJM Interconnection, LLC., Docket No. ER12-1177 (Feb. 29, 2012).

²⁴ See "Comments of the Independent Market Monitor for PJM," Docket No. ER12-1177-000 (March 12, 2012) http://www.monitoringanalytics.com/Filings/2012/IMM_Comments_ER12-1177-000_20120312.PDF.

Generation Retirements 2011 through 2022

Table 12-4 shows that there are 46,448.9 MW of generation that have been, or are planned to be, retired between 2011 and 2022, of which 32,486.2 MW (69.9 percent) are coal fired steam units, as of June 30, 2019. Retirements are primarily a result of the inability of coal and other units to compete with efficient combined cycle units burning low cost gas.

										5165									
			CI -				Hydro –	Hydro -		RICE -					Steam -				
		Combined	Natural		CT -	Fuel	Pumped	Run of		Natural	RICE -	RICE -		Steam -	Natural	Steam -	Steam -		
	Battery	Cycle	Gas	CT - Oil	Other	Cell	Storage	River	Nuclear	Gas	Oil	Other	Solar	Coal	Gas	Oil	Other	Wind	Total
Retirements 2011	0.0	0.0	0.0	0.0	128.3	0.0	0.0	0.0	0.0	0.0	2.7	0.0	0.0	543.0	522.5	0.0	0.0	0.0	1,196.5
Retirements 2012	0.0	0.0	250.0	0.0	240.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5,907.9	0.0	548.0	16.0	0.0	6,961.9
Retirements 2013	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.9	7.0	0.0	2,589.9	82.0	166.0	8.0	0.0	2,858.8
Retirements 2014	0.0	0.0	136.0	0.0	422.0	0.0	0.0	0.0	0.0	0.0	0.0	15.3	0.0	2,239.0	158.0	0.0	0.0	0.0	2,970.3
Retirements 2015	0.0	0.0	1,319.0	0.0	858.2	0.0	0.0	0.0	0.0	0.0	10.3	0.0	0.0	7,064.8	0.0	0.0	0.0	10.4	9,262.7
Retirements 2016	0.0	0.0	0.0	0.0	71.0	0.0	0.5	0.0	0.0	0.0	8.0	3.9	0.0	243.0	74.0	0.0	0.0	0.0	400.4
Retirements 2017	40.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.8	0.0	2,038.0	34.0	0.0	0.0	0.0	2,112.8
Retirements 2018	1.0	425.0	0.0	0.0	39.6	0.0	0.0	0.0	614.5	0.0	17.2	6.9	0.0	3,251.5	996.0	148.0	108.0	0.0	5,607.7
Retirements 2019	0.0	0.0	50.8	0.0	31.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3,027.0	97.0	10.0	10.0	0.0	3,225.8
Planned Retirements (July 2019 and later)	0.0	0.0	528.5	0.0	56.4	0.0	0.0	0.0	4,716.0	0.0	13.0	8.0	0.0	5,582.1	102.0	786.0	60.0	0.0	11,852.0
Total	41.0	425.0	2,284.3	0.0	1,846.5	0.0	0.5	0.0	5,330.5	0.0	57.1	41.9	0.0	32,486.2	2,065.5	1,658.0	202.0	10.4	46,448.9

Table 12-4 Summary of PJM unit retirements by unit type (MW): 2011 through 2022

Table 12-5 shows the capacity, average size, and average age of units retiring in PJM, from 2011 through 2022, while Table 12-6 shows these retirements by state. Of the 46,448.9 MW of units that has been, or are planned to be, retired between 2011 and 2022, 32,486.2 MW (69.9 percent) are coal fired steam units. These coal fired steam units have an average age of 52.6 years and an average size of 195.7 MW. Over half of the retiring coal fired steam units, 59.9 percent, are located in either Ohio or Pennsylvania.

Table 12-5 Retirements by unit type: 2011 through 2022

			Avg. Age at		
	Number of		Retirement		
Unit Type	Units	Avg. Size (MW)	(Years)	Total MW	Percent
Battery	2	20.5	7.0	41.0	0.1%
Combined Cycle	2	212.5	25.5	425.0	0.9%
Combustion Turbine	114	36.2	41.4	4,130.8	8.9%
Natural Gas	59	38.7	41.4	2,284.3	4.9%
Oil	0	0.0	0.0	0.0	0.0%
Other	55	33.6	41.4	1,846.5	4.0%
Fuel Cell	0	0.0	0.0	0.0	0.0%
Hydro	1	0.5	113.8	0.5	0.0%
Pumped Storage	1	0.5	113.8	0.5	0.0%
Run of River	0	0.0	0.0	0.0	0.0%
Nuclear	6	888.4	41.6	5,330.5	11.5%
RICE	23	4.4	29.3	99.0	0.2%
Natural Gas	0	0.0	0.0	0.0	0.0%
Oil	11	5.2	46.1	57.1	0.1%
Other	12	3.5	12.4	41.9	0.1%
Solar	0	0.0	0.0	0.0	0.0%
Steam	197	153.9	46.1	36,411.7	78.4%
Coal	166	195.7	52.6	32,486.2	69.9%
Natural Gas	18	114.8	60.8	2,065.5	4.4%
Oil	6	276.3	45.7	1,658.0	3.6%
Other	7	28.9	25.1	202.0	0.4%
Wind	1	10.4	15.6	10.4	0.0%
Total	346	134.2	46.5	46,448.9	100.0%

Table 12-6 Retirements (MW) by unit type and state: 2011 through 2022

			CT -				Hydro -	Hydro -		RICE -					Steam -				
		Combined	Natural		CT -		Pumped	Run of		Natural	RICE -	RICE -		Steam -	Natural	Steam -	Steam -		
State	Battery	Cycle	Gas	CT - Oil	Other	Fuel Cell	Storage	River	Nuclear	Gas	Oil	Other	Solar	Coal	Gas	Oil	Other	Wind	Total
DC	0.0	0.0	0.0	0.0	240.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	548.0	0.0	0.0	788.0
DE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	254.0	136.0	0.0	0.0	0.0	390.0
IL	0.0	0.0	296.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12.5	0.0	1,624.0	0.0	0.0	0.0	0.0	1,932.5
IN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	982.0	0.0	0.0	0.0	0.0	982.0
KY	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	995.0	0.0	0.0	0.0	0.0	995.0
MD	0.0	0.0	347.5	0.0	105.6	0.0	0.0	0.0	0.0	0.0	0.0	3.8	0.0	635.0	171.0	0.0	0.0	0.0	1,262.9
NC	0.0	0.0	0.0	0.0	31.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	324.5	0.0	0.0	0.0	0.0	355.5
NJ	0.0	158.0	1,590.0	0.0	1,046.6	0.0	0.5	0.0	614.5	0.0	8.0	9.8	0.0	1,543.0	932.5	148.0	10.0	0.0	6,060.9
OH	40.0	0.0	0.0	0.0	286.0	0.0	0.0	0.0	2,134.0	0.0	32.3	0.9	0.0	14,669.4	0.0	0.0	0.0	0.0	17,162.6
PA	1.0	0.0	50.8	0.0	58.0	0.0	0.0	0.0	2,582.0	0.0	13.9	13.0	0.0	4,801.3	283.0	176.0	109.0	10.4	8,098.4
VA	0.0	267.0	0.0	0.0	79.3	0.0	0.0	0.0	0.0	0.0	2.9	2.0	0.0	2,739.0	543.0	786.0	83.0	0.0	4,502.2
WV	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3,919.0	0.0	0.0	0.0	0.0	3,919.0
Total	41.0	425.0	2,284.3	0.0	1,846.5	0.0	0.5	0.0	5,330.5	0.0	57.1	41.9	0.0	32,486.2	2,065.5	1,658.0	202.0	10.4	46,448.9

Figure 12-2 is a map of unit retirements between 2011 and 2022, with a mapping to unit names in Table 12-7.

ID	Unit	ID	Unit	ID	Unit	ID	Unit	ID	Unit
1	AES Beaver Valley	51	Conesville 3	101	Hopewell James River Cogeneration	151	Northeastern Power NEPCO	201	Sewaren 2
2	Albright 1	52	Conesville 4	102	Howard Down 10	152	Notch Cliff GT1	202	Sewaren 3
3	Albright 2	53	Conesville 5	103	Hudson 1	153	Notch Cliff GT2	203	Sewaren 4
4	Albright 3	54	Conesville 6	104	Hudson 2	154	Notch Cliff GT3	204	Sewaren 6
5	Armstrong 1	55	Crane 1	105	Hurt NUG	155	Notch Cliff GT4	205	Southeast Chicago CT11
6	Armstrong 2	56	Crane 2	106	Hutchings 1-3, 5-6	156	Notch Cliff GT5	206	Southeast Chicago CT12
7	Arnold (Green Mtn. Wind Farm	57	Crane GT1	107	Hutchings 4	157	Notch Cliff GT6	207	Southeast Chicago CT5
8	Ashtabula 5	58	Crawford 7	108	Indian River 1	158	Notch Cliff GT7	208	Southeast Chicago CT6
9	Avon Lake 7	59	Crawford 8	109	Indian River 3	159	Notch Cliff GT8	209	Southeast Chicago CT7
10	BL England 1	60	Cromby 1	110	Ingenco Petersburg	160	Oyster Creek	210	Southeast Chicago CT8
11	BL England 2	61	Cromby 2	111	Kammer 1-3	161	Pennsbury Generator Landfill 1	211	Southeast Chicago GT10
12	BL England 3	62	Cromby D	112	Kanawha River 1-2	162	Pennsbury Generator Landfill 2	212	Southeast Chicago GT9
13	BL England Diesel Units 1-4	63	Dale 1-2	113	Kearny 10	163	Perry U1 Nuclear Generating Unit	213	Sporn 1-4
14	Barbados AES Battery	64	Dale 3	114	Kearny 11	164	Perryman 2	214	Sporn 5
15	Bay Shore 2	65	Dale 4	115	Kearny 9	165	Picway 5	215	Spruance NUG1 (Rich 1-2)
16	Bay Shore 3	66	Davis Besse U1 Nuclear Generating Unit	116	Killen 2	166	Piney Creek NUG	216	Spruance NUG2 (Rich 3-4)
17	Bay Shore 4	67	Deepwater 1	117	Killen CT	167	Pleasants Power Station U1	217	State Line 3
18	Bayonne Cogen Plant (CC)	68	Deepwater 6	118	Kimberly Clark Generator	168	Pleasants Power Station U2	218	State Line 4
19	Beaver Valley U1 Nuclear Generating Unit	69	Dixon Lee Landfill Generator	119	Kinsley Landfill	169	Portland 1	219	Stuart 1
20	Beaver Valley U2 Nuclear Generating Unit	70	Eastern Landfill Gas Generator	120	Kitty Hawk GT 1	170	Portland 2	220	Stuart 2
21	Bellemeade	71	Eastlake 1	121	Kitty Hawk GT 2	171	Possum Point 3	221	Stuart 3
22	Benning 15	72	Eastlake 2	122	Koppers Co. IPP	172	Possum Point 4	222	Stuart 4
23	Benning 16	73	Eastlake 3	123	Lake Kingman	173	Possum Point 5	223	Stuart Diesels 1-4
24	Bergen 3	74	Eastlake 4	124	Lake Shore 18	174	Potomac River 1	224	Stuart Diesels 1-4
25	Bethlehem Renewable Energy Generator (Landfill)	75	Eastlake 5	125	Lake Shore EMD	175	Potomac River 2	225	Sunbury 1-4
26	Big Sandy 2	76	Eastlake 6	126	MH50 Markus Hook Co-gen	176	Potomac River 3	226	Tait Battery
27	Bremo 3	77	Eddystone 1	127	Mad River CTs A	177	Potomac River 4	227	Tanners Creek 1-4
28	Bremo 4	78	Eddystone 2	128	Mad River CTs B	178	Potomac River 5	228	Three Mile Island Unit 1
29	Brunner Island Diesels	79	Edgecomb NUG (Rocky 1-2)	129	Mansfield 1	179	Pottstown LF (Moser)	229	Titus 1
30	Brunot Island 1B	80	Edison 1-3	130	Mansfield 2	180	R Paul Smith 3	230	Titus 2
31	Brunot Island 1C	81	Elrama 1	131	Mansfield 3	181	R Paul Smith 4	231	Titus 3
32	Buggs Island 1 (Mecklenberg)	82	Elrama 2	132	McKee 1	182	Reichs Ford Road Landfill Generator	232	Viking Energy NUG
33	Buggs Island 2 (Mecklenberg)	83	Elrama 3	133	McKee 2	183	Riverside 4	233	Wagner 2
34	Burger 3	84	Elrama 4	134	McKee 3	184	Riverside 6	234	Walter C Beckiord 1
35	Burger EMD	85	Essex 10-11	135	Mercer 1	185	Riverside 7	235	Walter C Beckiord 2
36	Burlington 8.11	86	Essex 12	136	Mercer 2	186	Riverside 8	236	Walter C Beckjord 3
37	Burlington 9	87	Evergreen Power United Corstack	137	Mercer 3	187	Riversville 5	237	Walter C Beckiord 4
38	Buzzard Point East Banks 1.2.4-8	88	Fairless Hills Landfill A	138	Miami Fort 6	188	Riversville 6	238	Walter C Beckjord 5-6
39	Buzzard Point West Banks 1-9	89	Fairless Hills Landfill B	139	Middle 1-3	189	Roanoke Valley 1	239	Walter C Beckiord GT 1-4
40	Cambria CoGen	90	Fauguier County Landfill	140	Missouri Ave B.C.D	190	Roanoke Valley 2	240	Warren County Landfill
41	Cedar 1	91	Fisk Street 19	141	Mitchell 2	191	Rolling Hills Landfill Generator	241	Warren County NUG
42	Cedar 2	92	GUDE Landfill	142	Mitchell 3	192	SMART Paper	242	Werner 1-4
43	Chesapeake 1-4	93	Gilbert 1-4	143	Modern Power Landfill NUG	193	Sammis 1-4	243	Westport 5
44	Chesapeake 7-10	94	Glen Gardner 1-8	144	Monmouth NUG landfill	194	Sammis 5	244	Will County 3
45	Chesapeake 7-10	95	Glen Lvn 5-6	145	Montour ATG	195	Sammis 6	245	Willow Island 1
46	Chesterfield 3	96	Gould Street Generation Station	146	Morris Landfill Generator	196	Sammis 7	246	Willow Island 2
47	Chesterfield 4	97	Harrisburg 4 CT	147	Muskingum River 1-5	197	Sammis Diesel	247	Winnebago Landfill
48	Clinch River 3	98	Hatfield's Ferry 1	148	National Park 1	198	Schuylkill 1	248	Yorktown 1-2
49	Columbia Dam Hvdro	99	Hatfield's Ferry 2	149	Niles 1	199	Schuvlkill Diesel	249	Zanesville Landfill
50	Colver Power Project	100	Hatfield's Ferry 3	150	Niles 2	200	Sewaren 1		

Table 12-7 Unit identification for map of PJM unit retirements: 2011 through 2022

Current Year Generation Retirements

Table 12-8 shows that in the first six months of 2019, 3,225.8 MW of generation retired. The largest generators that retired in the first six months of 2019 were the two 830.0 MW Mansfield coal fired steam units owned by FirstEnergy Corporation and located in the American Transmission Systems Incorporated (ATSI) Zone. Of the 3,225.8 MW of generation that retired, 1,660.0 MW (51.5 percent) were located in the ATSI Zone.

Company	Unit Name	ICAP (MW)	Unit Type	Zone Name	Age (Years)	Retirement Date
FirstEnergy Corp.	Mansfield 1	830.0	Steam-Coal	ATSI	42.9	05-Feb-19
FirstEnergy Corp.	Mansfield 2	830.0	Steam-Coal	ATSI	41.4	05-Feb-19
Riverstone Holdings LLC	Montour ATG	10.0	Steam-Oil	PPL	45.9	18-Feb-19
Dominion Resources, Inc.	Yorktown 1-2	164.0	Steam-Coal	Dominion	60.2	08-Mar-19
Dominion Resources, Inc.	Yorktown 1-2	159.0	Steam-Coal	Dominion	61.7	08-Mar-19
Exelon Corporation	Riverside 7	19.0	CT-Other	BGE	48.6	14-Mar-19
Rockland Capital Energy Investments, LLC	BL England 2	155.0	Steam-Coal	AECO	54.5	30-Apr-19
Dominion Resources, Inc.	Chesapeake GT2	12.0	CT-Other	Dominion	50.3	31-May-19
American Electric Power Company, Inc.	Conesville 5	400.0	Steam-Coal	AEP	42.6	01-Jun-19
American Electric Power Company, Inc.	Conesville 6	400.0	Steam-Coal	AEP	41.0	01-Jun-19
Covanta Holding Corporation	Warren County NUG	10.0	Steam-Other	JCPL	31.4	01-Jun-19
Exelon Corporation	Gould Street Generation Station	97.0	Steam-Natural Gas	BGE	66.5	01-Jun-19
Starwood Capital Group LLC	MH50 Markus Hook Co-gen	50.8	CT-Natural Gas	PECO	31.6	01-Jun-19
Novi Energy LLC	Hopewell James River Cogeneration	89.0	Steam-Coal	Dominion	35.1	25-Jun-19
Total		3,225.8				

Table 12-8 Unit deactivations: January through June, 2019

Planned Generation Retirements

Table 12-9 shows that, as of June 30, 2019, there are 11,852.0 MW of generation that have requested retirement after June 30, 2019, of which 5,131.0 MW (43.3 percent) are located in the ATSI Zone, 2,960.0 MW (57.7 percent) are coal fired steam units and 2,134.0 MW (41.6 percent) are nuclear units.

Table 12-9 Planned retirement of PJM units: June 30, 2019

Company	Unit Name	ICAP (MW)	Unit Type	Zone Name	Projected Deactivation Date
Exelon Corporation	Bethlehem Renewable Energy Generator (Landfill)	5.0	RICE-Other	PPL	31-Aug-19
Exelon Corporation	Eastern Landfill Gas Generator	3.0	RICE-Other	BGE	31-Aug-19
Northern Star Generation Services, Llc	Cambria CoGen	88.0	Steam-Coal	PENELEC	17-Sep-19
Kimberly-Clark Corporation	Kimberly Clark Generator	3.3	Steam-Coal	PECO	24-Sep-19
Exelon Corporation	Three Mile Island Unit 1 Nuclear Generating Station	805.0	Nuclear	Met-Ed	30-Sep-19
Exelon Corporation	Riverside 8	20.0	CT-Other	BGE	01-Dec-19
Ares Management LP	Spruance NUG1 (aka Spruance 1 Rich 1-2)	115.5	Steam-Coal	Dominion	12-Jan-20
FirstEnergy Corp.	Davis Besse U1 Nuclear Generating Unit	894.0	Nuclear	ATSI	31-May-20
FirstEnergy Corp.	Sammis 1-4	640.0	Steam-Coal	ATSI	31-May-20
American Electric Power Company, Inc.	Conesville 4	337.0	Steam-Coal	AEP	01-Jun-20
The AES Corporation	Conesville 4	127.8	Steam-Coal	AEP	01-Jun-20
Vistra Energy Corp	Conesville 4	312.0	Steam-Coal	AEP	01-Jun-20
Exelon Corporation	Fairless Hills Landfill A	30.0	Steam-Other	PECO	01-Jun-20
Exelon Corporation	Fairless Hills Landfill B	30.0	Steam-Other	PECO	01-Jun-20
Exelon Corporation	Notch Cliff GT1	14.0	CT-Natural Gas	BGE	01-Jun-20
Exelon Corporation	Notch Cliff GT2	14.0	CT-Natural Gas	BGE	01-Jun-20
Exelon Corporation	Notch Cliff GT3	14.0	CT-Natural Gas	BGE	01-Jun-20
Exelon Corporation	Notch Cliff GT4	14.0	CT-Natural Gas	BGE	01-Jun-20
Exelon Corporation	Notch Cliff GT5	14.6	CT-Natural Gas	BGE	01-Jun-20
Exelon Corporation	Notch Cliff GT6	15.6	CT-Natural Gas	BGE	01-Jun-20
Exelon Corporation	Notch Cliff GT7	14.5	CT-Natural Gas	BGE	01-Jun-20
Exelon Corporation	Notch Cliff GT8	16.0	CT-Natural Gas	BGE	01-Jun-20
Exelon Corporation	Pennsbury Generator Landfill 1	3.0	CT-Other	PECO	01-Jun-20
Exelon Corporation	Pennsbury Generator Landfill 2	3.0	CT-Other	PECO	01-Jun-20
Riverstone Holdings LLC	Wagner 2	135.0	Steam-Coal	BGE	01-Jun-20
Exelon Corporation	Westport 5	115.8	CT-Natural Gas	BGE	01-Jun-20
FirstEnergy Corp.	Colver Power Project	110.0	Steam-Coal	PENELEC	01-Sep-20
Ares Management LP	Edgecomb NUG (aka Edgecomb Rocky 1-2)	115.5	Steam-Coal	Dominion	31-Oct-20
NextEra Energy, Inc.	Monmouth NUG landfill	6.4	CT-Other	JCPL	31-Dec-20
FirstEnergy Corp.	Beaver Valley U1 Nuclear Generating Unit	892.0	Nuclear	DLCO	31-May-21
FirstEnergy Corp.	Perry U1 Nuclear Generating Unit	1,240.0	Nuclear	ATSI	31-May-21
Dominion Resources, Inc.	Possum Point 5	786.0	Steam-Oil	Dominion	31-May-21
Exelon Corporation	Southeast Chicago CT11	37.0	CT-Natural Gas	ComEd	31-May-21
Exelon Corporation	Southeast Chicago CT12	37.0	CT-Natural Gas	ComEd	31-May-21
Exelon Corporation	Southeast Chicago CT5	37.0	CT-Natural Gas	ComEd	31-May-21
Exelon Corporation	Southeast Chicago CT6	37.0	CT-Natural Gas	ComEd	31-May-21
Exelon Corporation	Southeast Chicago CT7	37.0	CT-Natural Gas	ComEd	31-May-21
Exelon Corporation	Southeast Chicago CT8	37.0	CT-Natural Gas	ComEd	31-May-21
Exelon Corporation	Southeast Chicago GT10	37.0	CT-Natural Gas	ComEd	31-May-21
Exelon Corporation	Southeast Chicago GT9	37.0	CT-Natural Gas	ComEd	31-May-21
FirstEnergy Corp.	Eastlake 6	24.0	CT-Other	ATSI	01-Jun-21
FirstEnergy Corp.	Mansfield 3	830.0	Steam-Coal	ATSI	01-Jun-21
City of Dover	McKee 3	102.0	Steam-Natural Gas	DPL	01-Jun-21
FirstEnergy Corp.	Sammis Diesel	13.0	RICE-Oil	ATSI	01-Jun-21
FirstEnergy Corp.	Beaver Valley U2 Nuclear Generating Unit	885.0	Nuclear	DLCO	31-0ct-21
FirstEnergy Corp.	Pleasants Power Station U1	639.0	Steam-Coal	APS	01-Jun-22
FirstEnergy Corp.	Pleasants Power Station U2	639.0	Steam-Coal	APS	01-Jun-22
FirstEnergy Corp.	Sammis 5	290.0	Steam-Coal	ATSI	01-Jun-22
FirstEnergy Corp.	Sammis 6	600.0	Steam-Coal	ATSI	01-Jun-22
FirstEnergy Corp.	Sammis 7	600.0	Steam-Coal	ATSI	01-Jun-22
Total		11,852.0			

Generation Queue

Any entity that requests interconnection of a new generating facility, including increases to the capacity of an existing generating unit, or that requests interconnection of a merchant transmission facility, must follow the process defined in the PJM tariff to obtain interconnection service.²⁵ PJM's process is designed to ensure that new generation is added in a reliable and systematic manner. The process is complex and time consuming at least in part as a result of the required analyses. The cost, time and uncertainty associated with interconnecting to the grid may create barriers to entry for potential entrants. The MMU recommends that barriers to entry be addressed in a timely manner in order to help ensure that the market will result in the entry of new capacity to meet the needs of PJM market participants.

Generation request queues are groups of proposed projects, including new units, reratings of existing units, capacity resources and energy only resources. Each queue is open for a fixed amount of time. Studies commence on all projects in a given queue when that queue closes. Queues A and B were open for one year. Queues C through T were open for six months. Starting in February 2008, Queues U through Y1 were open for three months. In May 2012, the duration of the queue period was reset to six months, starting with Queue Y2. Queue AE2began on October 1, 2018 and closed on March 31, 2019. Queue AF1 began on April 1, 2019 and will close on September 30, 2019.

Projects that do not meet submission requirements are removed from the queue. All projects that have entered a queue and have met the submission requirements have a status assigned. Projects listed as active are undergoing one of the studies (feasibility, system impact, facility) required to proceed. Other status options are under construction, suspended, and in service. A project cannot be suspended until it has reached the status of under construction. Any project that entered the queue before February 1, 2011, can be suspended for up to three years. Projects that entered the queue after February 1, 2011, face an additional restriction in that the suspension period is reduced to one year if they affect any project later in the queue.²⁶ When a project is suspended,

25 See OATT Parts IV ft VI. 26 See PJM. "PJM Manual 14C: Generation and Transmission Interconnection Process," Rev. 13 (August 23, 2018). PJM extends the scheduled milestones by the duration of the suspension. If, at any time, a milestone is not met, PJM will initiate the termination of the Interconnection Service Agreement (ISA) and the corresponding cancellation costs must be paid by the customer.²⁷

The PJM queue evaluation process has been substantially improved in recent years and it is more efficient and effective as a result.²⁸ The PJM queue evaluation process should continue to be improved to help ensure that barriers to competition from new generation investments are not created. The MMU recommends improvements in queue management including that PJM establish a review process to ensure that projects are removed from the queue if they are not viable, as well as a process to allow commercially viable projects to advance in the queue ahead of projects which have failed to make progress, subject to rules to prevent gaming.

Process Timelines

In the study phase of the interconnection planning process, a series of studies are performed to determine the feasibility, impact, and cost of projects in the queue. Table 12-10 is an overview of PJM's study process. System impact and facilities studies are often redone when a project is withdrawn in order to determine the impact on the projects remaining in the queue.

In 2016, the PJM Earlier Queue Submitted Task Force stakeholder group made changes to the interconnection process to address some of the issues related to delays observed in the various stages of the study phase. The changes became effective with the AC2 Queue that closed on March 31, 2017. Until there has been additional time and queue processing to validate the effectiveness of these changes, the MMU recommends continuing analysis of the study phase of PJM's transmission planning to reduce the need for postponements of study results, to decrease study completion times, and to improve the likelihood that a project at a given phase in the study process will successfully go into service.

²⁷ PJM does not track the duration of suspensions or PJM termination of projects.

²⁸ See PJM Interconnection, L.L.C., Docket No. ER12-1177 (Feb. 29, 2012).

Table 12-10 PJM generation planning process

				Days for Applicant
			Days for PJM to	to Decide Whether
Process Step	Start on	Financial Obligation	Complete	to Continue
Feasibility Study	Close of current queue	Cost of study (partially refundable deposit)	90	30
System Impact Study	Upon acceptance of the System Impact Study	Cost of study (partially refundable deposit)	120	30
	Agreement			
Facilities Study	Upon acceptance of the Facilities Study Agreement	Cost of study (refundable deposit)	Varies	60
Schedule of Work	Upon acceptance of Interconnection Service	Letter of credit for upgrade costs	Varies	37
	Agreement (ISA)			
Construction (only for new generation)	Upon acceptance of Interconnection Construction	None	Varies	NA
	Service Agreement (ICSA)			

Planned Generation Additions

Expected net revenues provide incentives to build new generation to serve PJM markets. The amount of planned new generation in PJM reflects investors' perception of the incentives provided by the combination of revenues from the PJM energy, capacity and ancillary service markets. On June 30, 2019, 125,757.4 MW of capacity were in generation request queues for construction through 2029. Although it is clear that not all generation in the queues will be built, PJM has added capacity steadily since markets were implemented on April 1, 1999.²⁹

There were 114,953.7 total MW in generation queues, in the status of active, under construction or suspended, at the end of 2018. In the first six months of 2019, the AE2 queue window closed, and the AF1 queue window opened. Combined, these queue windows added 32,555.1 MW to the queue. As projects move through the queue process, projects can be removed from the queue due to incomplete or invalid data, withdrawn by the market participant or placed in service. On June 30, 2019, there were 125,757.4 total MW in generation queues, in the status of active, under construction or suspended, an increase of 10,803.7 MW (9.4 percent). Table 12-11 shows MW in queues by expected completion year and MW changes in the queue between December 31, 2018, and June 30, 2019, for ongoing projects, i.e. projects with the status active, under construction or suspended.³⁰

Table 12-11 Queue comparison by expected completion year (MW): December 31, 2018 and June 30, 2019³¹

			Year Change				
	As of	As of					
Year	12/31/2018	06/30/2019	MW	Percent			
2008	12.0	12.0	0.0	0.0%			
2009	0.0	0.0	0.0	0.0%			
2010	0.0	0.0	0.0	0.0%			
2011	102.5	40.0	(62.5)	(61.0%)			
2012	59.6	20.6	(39.0)	(65.4%)			
2013	20.0	20.0	0.0	0.0%			
2014	25.0	10.0	(15.0)	(60.0%)			
2015	417.2	201.4	(215.8)	(51.7%)			
2016	1,818.6	657.4	(1,161.2)	(63.9%)			
2017	3,063.8	1,986.2	(1,077.6)	(35.2%)			
2018	10,189.3	4,468.7	(5,720.5)	(56.1%)			
2019	16,270.4	15,964.7	(305.7)	(1.9%)			
2020	22,508.9	24,030.5	1,521.6	6.8%			
2021	5,846.0	33,978.6	28,132.6	481.2%			
2022	2,460.9	27,756.1	25,295.2	1027.9%			
2023	0.0	7,995.1	7,995.1	0.0%			
2024	0.0	4,283.8	4,283.8	0.0%			
2025	0.0	2,286.9	2,286.9	0.0%			
2026	0.0	445.2	445.2	0.0%			
2027	0.0	800.1	800.1	0.0%			
2028	0.0	0.0	0.0	0.0%			
2029	0.0	800.1	800.1	0.0%			
Total	62,794.1	125,757.4	62,963.3	100.3%			

³¹ Wind and solar capacity in Table 12-11 through Table 12-15 have not been adjusted to reflect derating.

²⁹ See "New Generation in the PJM Capacity Market: MW and Funding Sources for Delivery Years 2007/2008 through 2018/2019," http://www.monitoringanalytics.com/reports/Reports/2016/New_Generation_in_the_PJM_Capacity_Market_20160504.pdf>.

³⁰ Expected completion dates are entered when the project enters the queue. Actual completion dates are generally different than expected completion dates.

Table 12-12 shows the project status changes in more detail and how scheduled queue capacity has changed between December 31, 2018, and June 30, 2019. For example, 86,919.1 MW entered the queue in the first six months of 2019. Of those 86,919.1 MW, 23,922.1 MW have been withdrawn. Of the total 71,173.0 MW marked as active on December 31, 2018, 18,562.6 MW were withdrawn, 3,322.2 MW were suspended, 3,353.3 MW started construction, and 1,126.0 MW went into service by June 30, 2019. Analysis of projects that were suspended on December 31, 2018 show that 3,711.0 MW came out of suspension and are now active as of June 30, 2019.

Table 12-12 Change in project status (MW): December 31, 2018 to June 30, 2019

			Sta	atus at 6/30/20	19	
	Total at			Under		
Status at 12/31/2018	12/31/2018	Active	In Service	Construction	Suspended	Withdrawn
(Entered during 2019)	0.0	62,950.1	33.8	13.2	0.0	23,922.1
Active	71,173.0	44,808.9	1,126.0	3,353.3	3,322.2	18,562.6
In Service	51,674.6	0.0	51,672.7	0.0	0.0	1.9
Under Construction	18,904.2	791.3	13,945.9	3,259.1	544.0	363.9
Suspended	9,356.1	3,711.0	140.0	0.0	3,004.4	2,500.7
Withdrawn	322,847.7	0.0	0.0	0.0	0.0	322,847.7
Total	473,955.5	112,261.2	66,918.4	6,625.6	6,870.6	368,198.8

On June 30, 2019, 125,757.4 MW of capacity were in generation request queues in the status of active, suspended or under construction. Table 12-13 shows each status by unit type. Of the 112,261.2 MW in the status of Active on June 30, 2019, 31,451.1 MW (28.0 percent) were combined cycle projects. Of the 6,625.6 MW in the status of under construction, 3,564.5 MW (53.8 percent) were combined cycle projects.

Table 12-13 Current project status (MW) by unit type: June 30, 2019

A significant shift in the distribution of unit types within the PJM footprint continues to develop as natural gas fired units enter the queue and coal fired steam units retire. As of June 30, 2019, there were 45,732.1 MW of natural gas fired capacity active, suspended or under construction in PJM queues (including combined cycle units, CTs, RICE units, and natural gas fired steam units). As of June 30, 2019, there were only 133.0 MW of coal fired steam capacity active, suspended or under construction in PJM queues.

There are 5,582.1 MW of coal fired steam capacity and 638.5 MW of natural gas capacity slated for deactivation between July 1, 2019, and December 31, 2022 (See Table 12-9). The replacement of coal fired steam units by natural gas units will significantly affect future congestion, the role of firm and interruptible gas supply, and natural gas supply infrastructure.

Table 12-14 shows the amount of capacity active, in service, under construction, suspended, or withdrawn for each queue since the beginning of the RTEP process and the total amount of capacity that had been included in each queue. All items in queues A-M are either in service or have been withdrawn. As of June 30, 2019, there are 125,757.4 MW of capacity in queues that are not yet in service or withdrawn, of which 5.5 percent are suspended, 5.3 percent are under construction and 89.3 percent have not begun construction.

			CT -				Hydro -	Hydro -		RICE -					Steam -				
		Combined	Natural		CT -		Pumped	Run of		Natural	RICE -	RICE -		Steam -	Natural	Steam -	Steam -		
	Battery	Cycle	Gas	CT - Oil	Other	Fuel Cell	Storage	River	Nuclear	Gas	Oil	Other	Solar	Coal	Gas	Oil	Other	Wind	Total
Active	2,426.2	31,451.1	5,267.4	14.0	0.0	0.0	1,000.0	114.0	123.5	91.9	0.0	0.8	47,091.6	85.0	94.0	0.0	40.0	24,461.8	112,261.2
Suspended	52.3	4,769.1	200.0	0.0	0.0	0.0	0.0	0.0	0.0	39.8	0.0	0.0	487.4	0.0	0.0	0.0	16.0	1,306.0	6,870.6
Under Construction	4.6	3,564.5	253.0	0.0	0.0	0.0	0.0	22.7	44.0	1.3	4.0	0.0	664.9	48.0	0.0	0.0	62.5	1,956.1	6,625.6
Total	2,483.0	39,784.7	5,720.4	14.0	0.0	0.0	1,000.0	136.7	167.5	133.0	4.0	0.8	48,243.9	133.0	94.0	0.0	118.5	27,723.9	125,757.4

Table 12-14 Capacity in PJM queues (MW): June 30, 2019³²

			Under			
Queue	Active	In Service	Construction	Suspended	Withdrawn	Total
A Expired 31-Jan-98	0.0	9,094.0	0.0	0.0	17,252.0	26,346.0
B Expired 31-Jan-99	0.0	4,645.5	0.0	0.0	14,956.7	19,602.2
C Expired 31-Jul-99	0.0	531.0	0.0	0.0	3,558.3	4,089.3
D Expired 31-Jan-00	0.0	850.6	0.0	0.0	7,358.0	8,208.6
E Expired 31-Jul-00	0.0	795.2	0.0	0.0	8,021.8	8,817.0
F Expired 31-Jan-01	0.0	52.0	0.0	0.0	3,092.5	3,144.5
G Expired 31-Jul-01	0.0	1,189.6	0.0	0.0	17,961.8	19,151.4
H Expired 31-Jan-02	0.0	702.5	0.0	0.0	8,421.9	9,124.4
I Expired 31-Jul-02	0.0	103.0	0.0	0.0	3,728.4	3,831.4
J Expired 31-Jan-03	0.0	42.0	0.0	0.0	846.0	888.0
K Expired 31-Jul-03	0.0	93.1	0.0	0.0	485.3	578.4
L Expired 31-Jan-04	0.0	256.5	0.0	0.0	4,033.7	4,290.2
M Expired 31-Jul-04	0.0	504.8	0.0	0.0	3,705.6	4,210.4
N Expired 31-Jan-05	39.0	2,398.8	0.0	0.0	8,090.3	10,528.0
O Expired 31-Jul-05	0.0	1,665.2	225.0	0.0	5,466.8	7,357.0
P Expired 31-Jan-06	0.0	3,227.8	62.5	0.0	5,320.5	8,610.8
Q Expired 31-Jul-06	0.0	3,147.9	0.0	0.0	11,385.7	14,533.6
R Expired 31-Jan-07	600.0	1,986.4	0.0	440.0	19,668.9	22,695.3
S Expired 31-Jul-07	70.0	3,543.5	0.0	0.0	12,396.5	16,010.0
T Expired 31-Jan-08	0.0	4,046.5	150.0	0.0	23,313.3	27,509.8
U1 Expired 30-Apr-08	0.0	206.9	12.0	0.0	7,937.8	8,156.7
U2 Expired 31-Jul-08	400.0	267.5	260.0	300.0	15,952.2	17,179.7
U3 Expired 31-Oct-08	100.0	333.0	0.0	0.0	2,535.6	2,968.6
U4 Expired 31-Jan-09	200.0	85.2	0.0	0.0	4,745.0	5,030.2
V1 Expired 30-Apr-09	40.0	197.9	0.0	0.0	2,532.8	2,770.7
V2 Expired 31-Jul-09	0.0	989.9	16.1	150.0	3,475.1	4,631.1
V3 Expired 31-Oct-09	200.0	912.0	0.0	20.0	3,822.7	4,954.7
V4 Expired 31-Jan-10	0.0	748.8	0.0	200.0	3,508.0	4,456.8
W1 Expired 30-Apr-10	13.5	345.9	300.0	0.0	5,139.5	5,798.9
W2 Expired 31-Jul-10	10.0	351.7	0.0	23.0	3,018.7	3,403.4
W3 Expired 31-Oct-10	0.0	490.3	57.7	100.0	8,574.1	9,222.0
W4 Expired 31-Jan-11	0.0	1,101.8	367.9	0.0	4,152.6	5,622.3
X1 Expired 30-Apr-11	0.0	1,103.8	0.0	0.0	6,200.6	7,304.4
X2 Expired 31-Jul-11	0.0	3,544.4	187.5	585.0	5,578.4	9,895.2
X3 Expired 31-Oct-11	0.0	89.2	20.0	894.0	6,771.9	7,775.1
X4 Expired 31-Jan-12	0.0	2,948.9	0.0	0.0	2,419.4	5,368.3
Y1 Expired 30-Apr-12	486.0	1,795.5	0.0	72.0	5,721.7	8,075.2
Y2 Expired 31-Oct-12	378.3	1,434.4	4.5	200.0	9,276.5	11,293.7
Y3 Expired 30-Apr-13	0.0	1,389.5	241.0	0.0	4,609.2	6,239.6
Z1 Expired 31-Oct-13	1,013.3	2,928.0	146.5	0.0	4,037.0	8,124.8
Z2 Expired 30-Apr-14	11.6	2,861.4	200.0	33.0	2,994.8	6,100.8
AA1 Expired 31-Oct-14	838.0	1,242.7	3,582.0	389.2	6,096.8	12,148.7
AA2 Expired 30-Apr-15	4,943.2	1,020.8	190.8	756.0	9,155.5	16,066.3
AB1 Expired 31-Oct-15	8,977.5	1,056.5	78.4	91.2	10,249.0	20,452.6

			Under			
Queue	Active	In Service	Construction	Suspended	Withdrawn	Total
AB2 Expired 31-Mar-16	6,467.3	207.5	198.9	1,269.6	7,074.1	15,217.4
AC1 Expired 30-Sep-16	10,327.3	234.7	198.0	1,258.7	8,056.9	20,075.6
AC2 Expired 30-Apr-17	4,878.4	94.0	0.6	53.9	7,574.8	12,601.6
AD1 Expired 30-Sep-17	8,682.5	26.7	113.0	35.0	2,450.9	11,308.1
AD2 Expired 31-Mar-18	9,641.3	33.8	13.2	0.0	10,726.4	20,414.7
AE1 Expired 30-Sep-18	21,389.0	0.0	0.0	0.0	11,810.9	33,199.8
AE2 Through 31-Mar-19	31,339.3	0.0	0.0	0.0	2,916.2	34,255.5
AF1 Through 30-Sep-19	1,215.7	0.0	0.0	0.0	20.0	1,235.7
Total	112,261.2	66,918.4	6,625.6	6,870.6	368,198.8	560,874.6

Table 12-15 shows the projects with a status of active, suspended or under construction, by unit type, and control zone. As of June 30, 2019, 125,757.4 MW of capacity were in generation request queues for construction through 2029.³³ Table 12-15 also shows the planned retirements for each zone.

32 Projects listed as partially in service are counted as in service for the purposes of this analysis.

³³ Since wind resources cannot be dispatched on demand, PJM rules previously required that the unforced capacity of wind resources be derated to 20 percent of nameplate capacity until actual generation data are available. Beginning with Queue U, PJM derated wind resources to 13 percent of nameplate capacity until there is operational data to support a different conclusion. PJM derated solar resources to 38 percent of nameplate capacity. Effective June 1, 2017, PJM adjusted the derates of wind and solar resources. The capacity factor derates for wind resources are dependent on the wind farm locations and have an average derate of 16.2 percent. The capacity factor derates for solar resources are dependent on the solar installation type and have an average derate of 46.7 percent. Based on the derating of 27,723.9 MW of wind resources and 48,243.9 MW of solar resources, using the average derate factors, the 125,757.4 MW currently under construction, suspended or active in the queue would be reduced to 76,810.8 MW.

				CT -				Hydro -	Hydro -		RICE -					Steam -				Total	
				Natural		CT -	Fuel	Pumped	Run of		Natural	RICE -	RICE -		Steam	Natural	Steam	Steam		Queue	Planned
LDA	Zone	Battery	CC	Gas	CT - Oil	Other	Cell	Storage	River	Nuclear	Gas	Oil	Other	Solar	- Coal	Gas	- Oil	- Other	Wind	Capacity	Retirements
EMAAC	AECO	100.0	1,068.6	230.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	611.5	0.0	0.0	0.0	0.0	2,803.6	4,813.7	0.0
	DPL	31.0	451.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1,729.2	0.0	0.0	0.0	0.0	727.1	2,938.3	102.0
	JCPL	241.8	600.0	200.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	250.5	0.0	0.0	0.0	0.0	4,559.2	5,851.5	6.4
	PECO	0.0	102.0	29.0	0.0	0.0	0.0	0.0	0.0	94.0	0.0	4.0	0.0	18.0	0.0	0.0	0.0	0.0	0.0	247.0	69.3
	PSEG	2.0	1,792.5	675.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	87.7	0.0	0.0	0.0	0.0	0.0	2,557.2	0.0
	RECO	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0	60.0	0.0
	EMAAC Total	374.8	4,014.1	1,134.0	0.0	0.0	0.0	0.0	0.0	94.0	0.0	4.0	0.0	2,756.8	0.0	0.0	0.0	0.0	8,089.9	16,467.7	177.7
SWMAAC	BGE	0.1	0.0	153.6	14.0	0.0	0.0	0.0	0.0	45.5	1.3	0.0	0.0	4.0	0.0	0.0	0.0	0.0	0.0	218.5	390.5
	Рерсо	0.0	1,177.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	190.9	0.0	0.0	0.0	0.0	0.0	1,368.5	0.0
	SWMAAC Total	0.1	1,177.6	153.6	14.0	0.0	0.0	0.0	0.0	45.5	1.3	0.0	0.0	194.9	0.0	0.0	0.0	0.0	0.0	1,587.0	390.5
WMAAC	Met-Ed	0.0	113.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	876.1	0.0	0.0	0.0	0.0	0.0	990.0	805.0
	PENELEC	160.0	1,368.0	481.0	0.0	0.0	0.0	0.0	0.0	0.0	79.8	0.0	0.0	1,467.5	0.0	0.0	0.0	0.0	290.3	3,846.6	198.0
	PPL	234.0	1,327.8	0.0	0.0	0.0	0.0	1,000.0	0.0	0.0	0.0	0.0	0.0	736.2	0.0	0.0	0.0	16.0	563.1	3,877.1	5.0
	WMAAC Total	394.0	2,809.7	481.0	0.0	0.0	0.0	1,000.0	0.0	0.0	79.8	0.0	0.0	3,079.8	0.0	0.0	0.0	16.0	853.4	8,713.7	1,008.0
Non-MAAC	AEP	736.6	8,016.0	1,097.0	0.0	0.0	0.0	0.0	99.0	28.0	12.0	0.0	0.8	12,139.3	101.0	30.0	0.0	40.0	6,187.3	28,487.0	776.8
	APS	94.0	8,629.7	116.0	0.0	0.0	0.0	0.0	15.0	0.0	39.9	0.0	0.0	2,013.4	0.0	0.0	0.0	0.0	1,073.4	11,981.4	1,278.0
	ATSI	20.3	5,805.0	70.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1,783.8	0.0	0.0	0.0	0.0	816.1	8,495.1	5,131.0
	ComEd	290.9	5,342.6	1,238.0	0.0	0.0	0.0	0.0	22.7	0.0	0.0	0.0	0.0	4,367.5	0.0	64.0	0.0	0.0	7,514.7	18,840.3	296.0
	DAY	19.9	1,150.0	127.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2,257.7	12.0	0.0	0.0	0.0	100.0	3,667.1	0.0
	DEOK	19.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	530.0	20.0	0.0	0.0	0.0	0.0	569.8	0.0
	DLCO	0.0	0.0	205.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	71.3	0.0	0.0	0.0	0.0	0.0	276.3	1,777.0
	Dominion	532.6	2,840.0	1,098.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	17,268.4	0.0	0.0	0.0	62.5	3,089.2	24,891.0	1,017.0
	EKPC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1,781.0	0.0	0.0	0.0	0.0	0.0	1,781.0	0.0
-	OVEC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	RMU	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Non-MAAC Total	1,714.1	31,783.3	3,951.8	0.0	0.0	0.0	0.0	136.7	28.0	51.9	0.0	0.8	42,212.4	133.0	94.0	0.0	102.5	18,780.6	98,989.1	10,275.8
	Total	2,483.0	39,784.7	5,720.4	14.0	0.0	0.0	1,000.0	136.7	167.5	133.0	4.0	0.8	48,243.9	133.0	94.0	0.0	118.5	27,723.9	125,757.4	11,852.0

Table 12-15 Queue totals for projects (active, suspended and under construction) by LDA, control zone and unit type (MW): June 30, 2019³⁴

Withdrawn Projects

The queue contains a substantial number of projects that are not likely to be built. The queue process results in a substantial number of projects that are withdrawn. Manual 14B requires PJM to apply a commercial probability factor at the feasibility study stage to improve the accuracy of capacity and cost estimates. The commercial probability factor is based on the historical incidence of projects dropping out of the queue at the impact study stage, but the actual calculation of commercial probability factors is less than transparent.³⁵ The impact and facilities studies are performed using the full amount of planned generation in the queues. The actual withdrawal rates are shown in Table 12-16 and Table 12-17.

Table 12-16 shows the milestone status when projects were withdrawn, for all withdrawn projects. Of the 2,530 projects withdrawn, 1,257 (49.7 percent) were withdrawn before the system impact study was completed. Once a Construction Service Agreement (CSA) is executed, the financial obligation for any necessary

³⁴ This data includes only projects with a status of active, under construction, or suspended. 35 See PJM. "PJM Manual 14B: PJM Region Transmission Planning Process," Rev. 44 (Feb. 21, 2019).

transmission upgrades cannot be retracted. Of the 2,530 projects withdrawn, 486 (19.2 percent) were withdrawn after the completion of a Construction Service Agreement.

Table 12-16 Last milestone at time of withdrawal: January 1997 through June 2019

	Projects		Average	Maximum
Milestone Completed	Withdrawn	Percent	Days	Days
Never Started	449	17.7%	92	875
Feasibility Study	808	31.9%	277	1,633
System Impact Study	504	19.9%	752	3,248
Facilities Study	283	11.2%	1,080	3,810
Construction Service Agreement (CSA) or beyond	486	19.2%	1,304	4,249
Total	2,530	100.0%		

Average Time in Queue

Table 12-17 shows the time spent at various stages in the queue process and the completion time for the studies performed. For completed projects, there is an average time of 1,017 days, or 2.8 years, between entering a queue and going into service. For withdrawn projects, there is an average time of 617 days, or 1.7 years, between entering a queue and withdrawing.

Table 12-17 Project queue times by status (days): June 30, 2019³⁶

	Average	Standard		
Status	(Days)	Deviation	Minimum	Maximum
Active	501	609	0	4,211
In-Service	1,017	728	0	4,024
Suspended	1,500	905	366	4,177
Under Construction	1,820	1,073	486	4,933
Withdrawn	617	689	0	4,249

Table 12-18 presents information on the time in the stages of the queue for those projects not yet in service or already withdrawn. Of the 1,116 projects in the queue as of June 30, 2019, 281 (25.2 percent) had a completed feasibility study and 280 (25.1 percent) had a completed construction service agreement.

		Percent		
	Number of	of Total	Average	Maximum
Milestone Reached	Projects	Projects	Days	Days
Under Review	351	31.5%	132	473
Feasibility Study	281	25.2%	482	1,160
System Impact Study	176	15.8%	905	1,704
Facilities Study	28	2.5%	1,603	3,927
Construction Service Agreement (CSA) or beyond	280	25.1%	1,542	5,389
Total	1,116	100.0%		

Table 12-18 Project queue times by milestone (days): June 30, 2019

Completion Rates

The probability of a project going into service increases as each step of the planning process is completed.

Table 12-19 shows the historic completion rates (MW energy) by unit type for projects that have completed the system impact study (SIS), facilities study agreement (FSA) and construction service agreement (CSA) milestones as well as the historic completion rates for all projects including those withdrawn before reaching the SIS milestone. For each unit type, the total MW in service was divided by the total energy MW entered in the queue. To calculate the completion rates for projects that reached the individual milestones, only those projects that reached a final status of withdrawn or in service were evaluated. For example, if a project was withdrawn after the completion of its SIS, but before the completion of the FSA, the totals would be included in the calculation of the SIS completion rate, but not in the calculation of the FSA or CSA completion rates. Similarly, if a project was withdrawn after the completion of its FSA, but before the completion of the CSA, the totals would be included in the calculation of the SIS and FSA completion rates, but not in the calculation of the CSA completion rate. The completion rates show that of all wind projects to ever enter the queue and complete the system impact study stage, 16.9 percent of the queued MW have gone into service. The completion rate for wind projects increases to 31.8 percent when wind projects complete the facility study agreement, and further increases to 50.1 percent when wind projects complete the construction service agreement. Of all wind projects to enter the queue, only 7.9 percent of the queued MW have gone into service.

³⁶ The queue data shows that some projects were withdrawn and a withdrawal date was not identified. These projects were removed for the purposes of this analysis.

Table 12–19 Historic completion rates (MW energy) by unit type for projects with a completed SIS, FSA and CSA: January 1997 through June 2019

	Completion Rate	Completion Rate	Completion Rate	Completion Rate
Unit Type	(SIS)	(FSA)	(CSA)	(ALL)
Battery	27.3%	44.8%	56.1%	5.4%
CC	33.4%	53.1%	87.1%	13.0%
CT - Natural Gas	77.1%	83.5%	87.5%	47.7%
CT - Oil	35.6%	60.2%	90.8%	25.1%
CT - Other	12.3%	18.6%	29.5%	10.7%
Fuel Cell	6.6%	6.8%	6.8%	5.0%
Hydro - Pumped Storage	100.0%	100.0%	100.0%	20.6%
Hydro - Run of River	41.0%	57.1%	62.5%	20.9%
Nuclear	34.8%	41.7%	51.1%	28.6%
RICE - Natural Gas	34.5%	47.3%	53.8%	23.4%
RICE - Oil	30.6%	55.9%	55.9%	23.8%
RICE - Other	89.0%	91.4%	92.0%	77.9%
Solar	14.5%	28.5%	36.1%	1.9%
Steam - Coal	13.3%	24.9%	37.0%	6.0%
Steam - Natural Gas	90.1%	90.1%	90.1%	81.4%
Steam - Oil	0.0%	0.0%	0.0%	0.0%
Steam - Other	27.9%	37.2%	45.2%	23.5%
Wind	16.9%	31.8%	50.1%	7.9%

On June 30, 2019, 125,757.4 MW of capacity were in generation request queues in the status of active, under construction or suspended. Of the total 125,757.4 MW in the queue, 56,685.8 MW (45.1 percent) have reached at least the SIS milestone and 69,071.6 MW (54.9 percent) have not received a completed SIS. Based on historical completion rates, (applying the unit type specific completion rates for those projects that have reached the SIS, FSA or CSA milestone, and using the overall completion rates for those projects that have not yet reached the SIS milestone), 33,654.7 MW of new generation in the queue are expected to go into service.

Queue Analysis by Fuel Group

The time it takes to complete a study depends on the backlog and the number of projects in the queue, but not on the size of the project. Table 12-20 shows the number of projects that entered the queue by year and by fuel group. The fuel groups are nuclear units, renewable units (including solar, hydro, storage, biomass and wind) and traditional units (all other fuels). The number of queue entries has increased during the past several years, primarily by renewable projects. Of the 1,848 projects entered from January 2015 through June 2019, 1,540 projects, 83.3 percent, were renewable. Of the 345 projects entered in the first six months of 2019, 333 projects, 96.5 percent, were renewable.

Table 12-20 Number of projects entered in the queue: June 30, 2019

		Fuel Gro	oup	
Year Entered	Nuclear	Renewable	Traditional	Total
1997	2	0	11	13
1998	0	0	18	18
1999	1	5	84	90
2000	2	3	78	83
2001	4	6	81	91
2002	3	15	33	51
2003	1	34	18	53
2004	4	17	33	54
2005	3	75	55	133
2006	9	67	81	157
2007	9	65	145	219
2008	3	109	104	216
2009	10	109	54	173
2010	5	375	61	441
2011	6	268	81	355
2012	2	70	87	159
2013	1	75	78	154
2014	0	121	71	192
2015	0	196	113	309
2016	2	320	77	399
2017	2	300	53	355
2018	1	391	48	440
2019	0	333	12	345
Total	70	2,954	1,476	4,500

Renewable projects comprise the majority of projects entered in the queue, as well as what is currently active in the queue. Renewable projects make up 63.3 percent of the nameplate MW currently active, suspended or under construction in the queue (Table 12-21).

Fuel Group	Number of Projects	Percent of Projects	MW	Percent MW
Nuclear	9	0.8%	167.5	0.1%
Renewable	945	84.7%	79,587.5	63.3%
Traditional	162	14.5%	46,002.4	36.6%
Total	1,116	100.0%	125,757.4	100.0%

Table 12-21 Queue details by fuel group: June 30, 2019

Queue Analysis by Unit Type and Project Classification

Table 12-22 shows the current status of all generation queue projects by unit type and project classification from January 1, 1997, through June 30, 2019. As of June 30, 2019, 4,500 projects, representing 560,874.6 MW, have entered the queue process since its inception. Of those, 854 projects, representing 66,918.4 MW, went into service. Of the projects that entered the queue process, 2,530 projects, representing 368,198.8 MW (65.6 percent of the MW) withdrew prior to completion. Such projects may create barriers to entry for projects that would otherwise be completed by taking up queue positions, increasing interconnection costs and creating uncertainty.

A total of 3,671 projects have been classified as new generation and 829 projects have been classified as upgrades. Wind, solar and natural gas projects have accounted for 3,602 projects, or 80.0 percent, of all 4,500 generation queue projects.

										Num	ber of Proj	ects								
				CT -				Hydro -	Hydro -		RICE -					Steam -				
	Project			Natural		CT -	Fuel	Pumped	Run of		Natural	RICE -	RICE -		Steam -	Natural	Steam -	Steam -		
Project Status	Classification	Battery	CC	Gas	CT - Oil	Other	Cell	Storage	River	Nuclear	Gas	Oil	Other	Solar	Coal	Gas	Oil	Other	Wind	Total
In Comico	New Generation	21	60	48	10	25	3	0	11	2	9	0	55	136	8	5	0	3	80	476
In Service	Upgrade	5	88	90	15	5	0	3	17	41	8	1	15	17	52	7	0	7	7	378
Under	New Generation	21	3	1	0	0	0	0	2	0	1	0	0	17	0	0	0	0	11	56
Construction	Upgrade	0	9	2	0	0	0	0	0	1	0	1	0	3	2	0	0	1	2	21
с I I	New Generation	5	5	0	0	0	0	0	0	0	2	0	0	26	0	0	0	1	9	48
Suspended	Upgrade	2	5	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	10
Mittle always and	New Generation	110	412	21	9	81	26	2	39	9	22	12	16	1,033	55	1	0	34	421	2,303
withdrawn	Upgrade	17	83	10	13	13	2	0	4	9	0	2	3	28	14	0	0	2	27	227
A	New Generation	47	34	14	1	0	0	2	1	1	5	0	0	600	0	0	0	0	83	788
Active	Upgrade	23	36	28	0	0	0	0	3	7	1	0	1	72	4	3	0	1	14	193
Tatal Dualasta	New Generation	204	514	84	20	106	29	4	53	12	39	12	71	1,812	63	6	0	38	604	3,671
iotal projects	Upgrade	47	221	131	28	18	2	3	24	58	9	4	19	121	72	10	0	11	51	829

Table 12-22 Status of all generation queue projects: January 1997 through June 2019

Table 12-23 shows the totals in Table 12-22 by share of classification as new generation or upgrade. Within a unit type the shares of upgrades add to 100 percent and the shares of new generation add to 100 percent. For example, 70.8 percent of all hydro run of river projects classified as upgrades are currently in service in PJM, 16.7 percent of hydro run of river upgrades were withdrawn and 12.5 percent of hydro run of river upgrades are active in the queue.

	Percent of Projects																			
				CT -				Hydro -	Hydro -		RICE -					Steam -				
	Project			Natural		CT -	Fuel	Pumped	Run of		Natural	RICE -	RICE -		Steam -	Natural	Steam -	Steam -		
Project Status	Classification	Battery	CC	Gas	CT - Oil	Other	Cell	Storage	River	Nuclear	Gas	Oil	Other	Solar	Coal	Gas	Oil	Other	Wind	Total
In Comico	New Generation	10.3%	11.7%	57.1%	50.0%	23.6%	10.3%	0.0%	20.8%	16.7%	23.1%	0.0%	77.5%	7.5%	12.7%	83.3%	0.0%	7.9%	13.2%	13.0%
In Service	Upgrade	10.6%	39.8%	68.7%	53.6%	27.8%	0.0%	100.0%	70.8%	70.7%	88.9%	25.0%	78.9%	14.0%	72.2%	70.0%	0.0%	63.6%	13.7%	45.6%
Under	New Generation	10.3%	0.6%	1.2%	0.0%	0.0%	0.0%	0.0%	3.8%	0.0%	2.6%	0.0%	0.0%	0.9%	0.0%	0.0%	0.0%	0.0%	1.8%	1.5%
Construction	Upgrade	0.0%	4.1%	1.5%	0.0%	0.0%	0.0%	0.0%	0.0%	1.7%	0.0%	25.0%	0.0%	2.5%	2.8%	0.0%	0.0%	9.1%	3.9%	2.5%
Suspandad	New Generation	2.5%	1.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	5.1%	0.0%	0.0%	1.4%	0.0%	0.0%	0.0%	2.6%	1.5%	1.3%
Suspended	Upgrade	4.3%	2.3%	0.8%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.8%	0.0%	0.0%	0.0%	0.0%	2.0%	1.2%
Mittle always and	New Generation	53.9%	80.2%	25.0%	45.0%	76.4%	89.7%	50.0%	73.6%	75.0%	56.4%	100.0%	22.5%	57.0%	87.3%	16.7%	0.0%	89.5%	69.7%	62.7%
withdrawn	Upgrade	36.2%	37.6%	7.6%	46.4%	72.2%	100.0%	0.0%	16.7%	15.5%	0.0%	50.0%	15.8%	23.1%	19.4%	0.0%	0.0%	18.2%	52.9%	27.4%
A	New Generation	23.0%	6.6%	16.7%	5.0%	0.0%	0.0%	50.0%	1.9%	8.3%	12.8%	0.0%	0.0%	33.1%	0.0%	0.0%	0.0%	0.0%	13.7%	21.5%
Active	Upgrade	48.9%	16.3%	21.4%	0.0%	0.0%	0.0%	0.0%	12.5%	12.1%	11.1%	0.0%	5.3%	59.5%	5.6%	30.0%	0.0%	9.1%	27.5%	23.3%

Table 12-23 Status of all generation queue projects as a percent of total projects by classification: January 1997 through June 2019

Table 12-24 shows the nameplate generating capacity of projects in the PJM generation queue by technology type and project classification. For example, the 421 new generation wind projects that have been withdrawn from the queue as of June 30, 2019, (as shown in Table 12-22) constitute 71,835.0 MW of nameplate capacity. The 495 new generation and upgrade combined cycle projects that have been withdrawn in the same time period constitute 208,895.3 MW of nameplate capacity.

											Project MW	I								
				CT -				Hydro -	Hydro -		RICE -					Steam -				
	Project			Natural		CT -	Fuel	Pumped	Run of		Natural	RICE -	RICE -		Steam -	Natural	Steam -	Steam -		
Project Status	Classification	Battery	CC	Gas	CT - Oil	Other	Cell	Storage	River	Nuclear	Gas	Oil	Other	Solar	Coal	Gas	Oil	Other	Wind	Total
In Comico	New Generation	216.9	31,678.5	6,600.5	676.5	151.3	1.9	0.0	471.5	1,639.0	138.1	0.0	440.1	1,471.0	1,343.0	723.0	0.0	60.0	7,952.7	53,564.1
In Service	Upgrade	46.4	6,031.4	2,323.5	127.8	12.3	0.0	390.0	379.1	2,282.8	15.7	23.3	49.9	17.4	897.5	131.5	0.0	605.3	20.5	13,354.4
Under	New Generation	4.6	3,202.0	205.0	0.0	0.0	0.0	0.0	22.7	0.0	1.3	0.0	0.0	501.0	0.0	0.0	0.0	0.0	1,768.6	5,705.2
Construction	Upgrade	0.0	362.5	48.0	0.0	0.0	0.0	0.0	0.0	44.0	0.0	4.0	0.0	163.9	48.0	0.0	0.0	62.5	187.5	920.4
Curran e e el e el	New Generation	29.3	4,119.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	39.8	0.0	0.0	467.4	0.0	0.0	0.0	16.0	1,289.7	5,961.2
Suspended	Upgrade	23.0	650.1	200.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20.0	0.0	0.0	0.0	0.0	16.3	909.4
14/5±11	New Generation	1,734.2	198,666.1	2,113.3	1,721.0	1,244.2	5.5	500.0	1,986.9	8,161.0	368.1	63.9	88.6	29,335.9	33,511.6	27.0	0.0	1,035.8	71,835.0	352,398.0
withdrawn	Upgrade	406.3	10,229.3	495.5	589.0	72.5	0.9	0.0	57.1	916.0	0.0	13.0	10.0	835.1	865.0	0.0	0.0	37.1	1,274.0	15,800.8
A	New Generation	1,792.3	26,592.3	4,003.9	14.0	0.0	0.0	1,000.0	15.0	28.0	90.3	0.0	0.0	44,653.4	0.0	0.0	0.0	0.0	23,714.0	101,903.2
Active	Upgrade	633.9	4,858.8	1,263.5	0.0	0.0	0.0	0.0	99.0	95.5	1.6	0.0	0.8	2,438.2	85.0	94.0	0.0	40.0	747.8	10,358.1
Tatal Dualasta	New Generation	3,777.2	264,257.9	12,922.7	2,411.5	1,395.6	7.4	1,500.0	2,496.1	9,828.0	637.6	63.9	528.7	76,428.6	34,854.6	750.0	0.0	1,111.8	106,560.0	519,531.6
iotal projects	Upgrade	1,109.6	22,132.1	4,330.5	716.8	84.8	0.9	390.0	535.2	3,338.3	17.3	40.3	60.7	3,474.6	1,895.5	225.5	0.0	744.9	2,246.1	41,343.0

Table 12-24 Status of all generation capacity (MW) in the PJM generation queue: January 1997 through June 2019

Table 12-25 shows the MW totals in Table 12-24 by share by classification as new generation or upgrade. Within a unit type the shares of upgrades add to 100 percent and the shares of new generation add to 100 percent. For example, 67.4 percent of wind project MW classified as new generation have been withdrawn from the queue between January 1, 1997, and June 30, 2019.

									Percei	nt of Total	Projects b	y Classifica	ation							
				CT -				Hydro -	Hydro -		RICE -					Steam -				
	Project			Natural		CT -	Fuel	Pumped	Run of		Natural	RICE -	RICE -		Steam -	Natural	Steam -	Steam -		
Project Status	Classification	Battery	CC	Gas	CT – Oil	Other	Cell	Storage	River	Nuclear	Gas	Oil	Other	Solar	Coal	Gas	Oil	Other	Wind	Total
In Comico	New Generation	5.7%	12.0%	51.1%	28.1%	10.8%	26.2%	0.0%	18.9%	16.7%	21.7%	0.0%	83.2%	1.9%	3.9%	96.4%	0.0%	5.4%	7.5%	10.3%
III Service	Upgrade	4.2%	27.3%	53.7%	17.8%	14.5%	0.0%	100.0%	70.8%	68.4%	90.8%	57.8%	82.2%	0.5%	47.3%	58.3%	0.0%	81.3%	0.9%	32.3%
Under	New Generation	0.1%	1.2%	1.6%	0.0%	0.0%	0.0%	0.0%	0.9%	0.0%	0.2%	0.0%	0.0%	0.7%	0.0%	0.0%	0.0%	0.0%	1.7%	1.1%
Construction	Upgrade	0.0%	1.6%	1.1%	0.0%	0.0%	0.0%	0.0%	0.0%	1.3%	0.0%	9.9%	0.0%	4.7%	2.5%	0.0%	0.0%	8.4%	8.3%	2.2%
Suspended	New Generation	0.8%	1.6%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	6.2%	0.0%	0.0%	0.6%	0.0%	0.0%	0.0%	1.4%	1.2%	1.1%
Suspended	Upgrade	2.1%	2.9%	4.6%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.6%	0.0%	0.0%	0.0%	0.0%	0.7%	2.2%
M/ith duration	New Generation	45.9%	75.2%	16.4%	71.4%	89.2%	73.8%	33.3%	79.6%	83.0%	57.7%	100.0%	16.8%	38.4%	96.1%	3.6%	0.0%	93.2%	67.4%	67.8%
withdrawn	Upgrade	36.6%	46.2%	11.4%	82.2%	85.5%	100.0%	0.0%	10.7%	27.4%	0.0%	32.3%	16.5%	24.0%	45.6%	0.0%	0.0%	5.0%	56.7%	38.2%
A	New Generation	47.4%	10.1%	31.0%	0.6%	0.0%	0.0%	66.7%	0.6%	0.3%	14.2%	0.0%	0.0%	58.4%	0.0%	0.0%	0.0%	0.0%	22.3%	19.6%
Active	Upgrade	57.1%	22.0%	29.2%	0.0%	0.0%	0.0%	0.0%	18.5%	2.9%	9.2%	0.0%	1.3%	70.2%	4.5%	41.7%	0.0%	5.4%	33.3%	25.1%

Table 12-25 Status of all generation queue projects as percent of total MW in project classification: January 1997 through June 2019

Table 12-26 shows the project MW that entered the PJM generation queue by unit type and year of entry. Since 2016, 92.8 percent of all new projects entering the generation queue have been either combined cycle (24.6 percent), wind (22.0 percent) or solar projects (46.3 percent).

Table 12-26 Queue project MW by unit type and queue entry year: January 1997 through June 2019

			CT -				Hydro -	Hydro -		RICE -					Steam -				
			Natural		CT -		Pumped	Run of		Natural	RICE -	RICE -		Steam -	Natural	Steam -	Steam -		
Year	Battery	CC	Gas	CT - Oil	Other	Fuel Cell	Storage	River	Nuclear	Gas	Oil	Other	Solar	Coal	Gas	Oil	Other	Wind	Total
1997	0.0	4,148.0	321.0	315.0	0.0	0.0	0.0	0.0	50.0	0.0	0.0	0.0	0.0	6.0	0.0	0.0	0.0	0.0	4,840.0
1998	0.0	7,006.0	1,775.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	8,781.0
1999	0.0	29,412.7	2,412.1	0.0	10.0	0.0	0.0	196.0	45.0	0.0	0.0	0.0	0.0	47.0	0.0	0.0	525.0	115.4	32,763.2
2000	0.0	21,144.8	493.6	31.5	8.8	0.0	0.0	0.0	95.0	0.0	0.0	1.2	0.0	37.0	2.5	0.0	0.0	95.6	21,909.9
2001	0.0	25,411.7	264.0	0.0	0.0	0.0	0.0	107.0	90.0	0.0	0.0	15.6	0.0	1,244.6	10.0	0.0	0.0	252.9	27,395.8
2002	0.0	4,154.0	11.7	0.0	70.5	0.0	0.0	293.0	236.0	8.0	23.3	4.5	0.0	1,895.0	0.0	0.0	0.0	790.9	7,486.9
2003	0.0	2,361.4	10.0	8.0	0.8	0.0	0.0	2.0	0.0	29.0	0.0	27.5	0.0	522.0	0.0	0.0	165.0	997.0	4,122.7
2004	0.0	3,610.0	43.3	20.0	49.1	0.0	0.0	0.0	1,911.0	0.0	35.5	17.5	0.0	1,187.0	0.0	0.0	0.0	1,614.7	8,488.1
2005	0.0	5,824.6	961.0	281.0	51.4	0.0	340.0	174.2	242.0	21.5	0.0	65.1	0.0	6,360.0	0.0	0.0	24.0	6,020.0	20,364.9
2006	0.0	4,188.1	454.3	607.5	73.1	0.0	0.0	159.0	6,894.0	0.0	0.0	93.0	0.0	9,586.0	0.0	0.0	258.5	7,650.7	29,964.2
2007	0.0	13,944.6	941.2	215.9	149.5	0.0	16.0	255.4	368.0	0.0	0.0	56.5	3.3	9,078.0	190.0	0.0	50.5	18,525.6	43,794.4
2008	121.0	26,001.0	129.7	1,113.0	488.8	0.0	0.0	1,254.5	105.0	6.0	0.0	32.0	66.3	1,198.0	0.0	0.0	192.3	11,199.7	41,907.3
2009	34.0	5,548.4	14.0	66.0	214.2	0.0	0.0	133.9	1,933.8	4.5	16.0	15.2	636.5	1,273.0	5.5	0.0	148.0	6,672.6	16,715.6
2010	72.4	9,185.4	176.0	7.9	117.3	0.0	0.0	132.6	426.0	0.0	2.4	57.8	3,690.0	64.0	0.0	0.0	173.5	9,940.4	24,045.7
2011	24.1	20,354.5	29.5	0.0	174.6	0.0	0.0	30.0	182.0	0.0	14.0	75.3	2,022.9	357.0	0.0	0.0	49.0	5,576.4	28,889.3
2012	142.6	18,014.8	282.1	42.5	48.4	0.0	0.0	11.8	369.0	37.2	0.0	4.0	284.6	1,837.0	0.0	0.0	143.1	1,529.8	22,746.8
2013	217.4	10,493.1	1,201.8	5.0	11.2	0.0	0.0	89.4	102.0	59.7	0.0	1.6	231.7	158.0	40.0	0.0	44.7	1,407.9	14,063.4
2014	246.9	11,704.5	1,532.5	401.0	7.7	0.0	0.0	60.5	0.0	48.0	0.0	17.7	1,595.7	1,730.5	27.0	0.0	43.1	1,763.7	19,178.8
2015	546.9	27,540.8	1,324.5	0.0	0.9	2.3	34.0	0.0	0.0	320.4	13.0	31.4	2,931.6	47.0	606.5	0.0	0.0	2,160.6	35,559.7
2016	111.1	18,804.5	1,392.0	0.0	0.0	3.4	0.0	12.5	50.3	23.5	0.0	38.9	11,771.5	80.0	77.0	0.0	0.0	3,467.5	35,832.2
2017	24.6	5,465.8	702.0	0.0	4.1	2.7	0.0	20.5	39.1	97.1	0.0	33.8	13,883.9	14.0	17.0	0.0	0.0	5,432.0	25,736.7
2018	1,402.4	9,787.4	2,647.4	14.0	0.0	0.0	1,000.0	0.0	28.1	0.0	0.0	0.8	24,650.3	29.0	0.0	0.0	40.0	17,929.3	57,528.7
2019	1,943.4	2,284.0	134.5	0.0	0.0	0.0	500.0	99.0	0.0	0.0	0.0	0.0	18,134.8	0.0	0.0	0.0	0.0	5,663.4	28,759.1
Total	4,886.8	286,390.0	17,253.2	3,128.3	1,480.3	8.3	1,890.0	3,031.3	13,166.3	654.9	104.2	589.4	79,903.2	36,750.1	975.5	0.0	1,856.7	108,806.1	560,874.6

Combined Cycle Project Analysis

Table 12-27 shows the status of all combined cycle projects by number of projects that entered PJM generation queues from January 1, 1997, through June 30, 2019, by zone. Of the 92 combined cycle projects classified either as new generation or upgrade currently active, suspended or under construction in the PJM generation queue, 45 projects (48.9 percent) are located within AEP, ComEd and APS.

											Nur	nber of	Projects	5									
Project Status	Project Classification	AECO	AEP	APS	ATSI	BGE	ComEd	DAY	DEOK	DLCO	Dominion	DPL	EKPC	JCPL	Met-Ed	OVEC	PECO	PENELEC	Рерсо	PPL	PSEG	RECO	Total
In Comise	New Generation	1	4	2	2	2	1	0	2	0	7	2	0	7	4	0	5	1	4	10	6	0	60
In Service	Upgrade	3	8	7	3	0	4	0	0	0	14	5	0	6	2	0	10	3	2	7	14	0	88
Under	New Generation	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	3
Construction	Upgrade	0	2	0	2	0	0	0	0	0	0	0	0	0	0	0	2	1	2	0	0	0	9
C	New Generation	0	1	1	0	0	0	0	0	0	1	0	0	1	0	0	0	0	1	0	0	0	5
Suspended	Upgrade	0	0	0	0	0	0	0	0	0	0	1	0	2	0	0	0	0	2	0	0	0	5
Mitte due une	New Generation	21	18	40	12	8	13	0	1	2	17	17	3	25	25	0	43	39	33	40	53	2	412
withdrawn	Upgrade	6	7	5	3	0	3	0	1	0	10	4	0	5	7	0	3	5	3	6	15	0	83
A	New Generation	2	8	9	3	0	5	1	0	0	1	0	0	0	0	0	0	2	0	1	2	0	34
Active	Upgrade	2	6	8	1	0	5	0	0	0	3	0	0	1	2	0	1	2	0	4	1	0	36
Tatal Dualasta	New Generation	24	31	52	19	10	19	1	3	2	26	19	3	33	29	0	48	43	38	51	61	2	514
Iotal Projects	Upgrade	11	23	20	9	0	12	0	1	0	27	10	0	14	11	0	16	11	9	17	30	0	221

Table 12-27	Status of all combi	ned cycle que	ue projects b	y zone (number of	projects): January	y 1997 through June 2019
-------------	---------------------	---------------	---------------	-------------------	--------------------	--------------------------

Table 12-28 shows the status of all combined cycle projects by MW that entered PJM generation queues from January 1, 1997 through June 30, 2019, by zone. Of the 39,784.7 MW of combined cycle projects classified either as new generation or upgrade currently active, suspended or under construction in the PJM generation queue, 21,988.3 MW (55.3 percent) are located within AEP, ComEd and APS.

Table 12-28 Status of all combined cycle queue projects by zone (MW): January 1997 through June 2019

												Project	MW										
	Project																						
Project Status	Classification	AECO	AEP	APS	ATSI	BGE	ComEd	DAY	DEOK	DLCO	Dominion	DPL	EKPC	JCPL	Met-Ed	OVEC	PECO	PENELEC	Рерсо	PPL	PSEG	RECO	Total
In Service	New Generation	650.0	3,032.0	1,455.0	1,599.0	140.0	600.0	0.0	533.0	0.0	5,854.1	319.2	0.0	1,665.8	2,557.0	0.0	2,665.0	850.0	1,560.0	5,750.0	2,448.5	0.0	31,678.5
III SCIVICC	Upgrade	229.0	230.0	790.0	306.0	0.0	633.6	0.0	0.0	0.0	873.0	102.0	0.0	110.0	45.0	0.0	973.5	92.3	89.1	712.0	845.9	0.0	6,031.4
Under	New Generation	0.0	0.0	0.0	2,152.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1,050.0	0.0	0.0	0.0	0.0	3,202.0
Construction	Upgrade	0.0	100.0	0.0	38.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	35.0	50.0	139.5	0.0	0.0	0.0	362.5
Sucoondod	New Generation	0.0	585.0	1,140.0	0.0	0.0	0.0	0.0	0.0	0.0	1,060.0	0.0	0.0	440.0	0.0	0.0	0.0	0.0	894.0	0.0	0.0	0.0	4,119.0
Suspended	Upgrade	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	451.0	0.0	55.0	0.0	0.0	0.0	0.0	144.1	0.0	0.0	0.0	650.1
Withdrawn	New Generation	7,515.4	11,249.5	16,982.1	7,471.0	3,122.1	7,579.3	0.0	134.5	665.0	11,261.0	5,436.4	991.8	13,122.6	13,001.0	0.0	23,340.0	15,931.0	20,414.2	17,270.7	23,171.7	6.9	198,666.1
withurawi	Upgrade	115.4	711.0	579.0	86.0	0.0	1,375.0	0.0	36.0	0.0	580.4	668.0	0.0	253.0	1,742.0	0.0	240.0	1,040.6	85.0	500.0	2,217.9	0.0	10,229.3
Active	New Generation	1,027.0	6,589.0	6,606.0	3,065.0	0.0	3,600.9	1,150.0	0.0	0.0	1,600.0	0.0	0.0	0.0	0.0	0.0	0.0	183.0	0.0	1,030.0	1,741.4	0.0	26,592.3
Active	Upgrade	41.6	742.0	883.7	550.0	0.0	1,741.7	0.0	0.0	0.0	180.0	0.0	0.0	105.0	113.9	0.0	67.0	85.0	0.0	297.8	51.1	0.0	4,858.8
Total Projects	New Generation	9,192.4	21,455.5	26,183.1	14,287.0	3,262.1	11,780.2	1,150.0	667.5	665.0	19,775.1	5,755.6	991.8	15,228.4	15,558.0	0.0	26,005.0	18,014.0	22,868.2	24,050.7	27,361.6	6.9	264,257.9
iotai riojects	Upgrade	386.0	1,783.0	2,252.7	980.0	0.0	3,750.3	0.0	36.0	0.0	1,633.4	1,221.0	0.0	523.0	1,900.9	0.0	1,315.5	1,267.9	457.7	1,509.8	3,114.9	0.0	22,132.1

Combustion Turbine - Natural Gas Project Analysis

Table 12-29 shows the status of all combustion turbine natural gas projects by number of projects that entered PJM generation queues from January 1, 1997, through June 30, 2019, by zone. Of the 46 combustion turbine natural gas projects classified either as new generation or upgrade currently active, suspended or under construction in the PJM generation queue, 25 projects (54.3 percent) are located within AEP, ComEd and APS.

											Nur	nber of	Projects	5									
Project Status	Project Classification	AECO	AEP	APS	ATSI	BGE	ComEd	DAY	DEOK	DLCO	Dominion	DPL	EKPC	JCPL	Met-Ed	OVEC	PECO	PENELEC	Рерсо	PPL	PSEG	RECO	Total
In Comico	New Generation	5	0	6	0	3	0	0	0	0	2	7	0	3	1	0	2	4	2	4	9	0	48
In Service	Upgrade	4	7	6	1	0	9	6	0	0	24	7	0	0	1	0	2	2	3	4	14	0	90
Under	New Generation	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1
Construction	Upgrade	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	2
Suspandad	New Generation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Suspended	Upgrade	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1
With dworum	New Generation	1	4	0	0	0	1	0	0	0	2	0	1	0	0	0	1	5	0	1	5	0	21
Withurawn	Upgrade	2	1	0	1	0	1	0	0	0	3	0	0	0	1	0	0	1	0	0	0	0	10
Activo	New Generation	1	2	0	0	2	2	1	0	0	3	0	0	0	0	0	1	1	0	0	1	0	14
Active	Upgrade	0	2	5	1	0	13	1	0	0	3	1	0	0	0	0	1	1	0	0	0	0	28
Total Ducioata	New Generation	7	6	6	0	5	3	1	0	1	7	7	1	3	1	0	4	10	2	5	15	0	84
iotal Frojects	Upgrade	6	10	11	3	0	24	7	0	0	30	8	0	2	2	0	3	4	3	4	14	0	131

Table 12-29 Status of all combustion turbine - natural gas generation queue projects by zone (number of projects): January 1997 through June 2019

Table 12-30 shows the status of all combustion turbine natural gas projects by MW that entered PJM generation queues from January 1, 1997 through June 30, 2019, by zone. Of the 5,720.4 MW of combustion turbine natural gas projects classified either as new generation or upgrade currently active, suspended or under construction in the PJM generation queue, 2,451.0 MW (42.8 percent) are located within AEP, ComEd and APS.

Table 12-30 Status of all combustion turbine - natural gas queue projects by zone (MW): January 1997 through June 2019

												Project I	WN										
	Project																						
Project Status	Classification	AECO	AEP	APS	ATSI	BGE	ComEd	DAY	DEOK	DLCO	Dominion	DPL	EKPC	JCPL	Met-Ed	OVEC	PECO	PENELEC	Pepco	PPL	PSEG	RECO	Total
In Service	New Generation	360.7	0.0	1,176.0	0.0	23.0	0.0	0.0	0.0	0.0	1,015.0	1,491.0	0.0	522.1	10.0	0.0	559.0	361.9	5.0	150.9	925.9	0.0	6,600.5
III SCIVICC	Upgrade	43.7	190.0	187.7	40.0	0.0	257.0	60.0	0.0	0.0	887.7	86.0	0.0	0.0	34.1	0.0	13.0	25.0	32.0	252.3	215.0	0.0	2,323.5
Under	New Generation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	205.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	205.0
Construction	Upgrade	0.0	0.0	0.0	0.0	0.0	48.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	48.0
Suspandad	New Generation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Suspended	Upgrade	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	200.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	200.0
Withdrawn	New Generation	7.5	460.0	0.0	0.0	0.0	10.0	0.0	0.0	0.0	75.5	0.0	73.0	0.0	0.0	0.0	0.5	326.8	0.0	19.9	1,140.1	0.0	2,113.3
withurawn	Upgrade	165.5	6.0	0.0	25.0	0.0	7.0	0.0	0.0	0.0	57.0	0.0	0.0	0.0	0.0	0.0	0.0	235.0	0.0	0.0	0.0	0.0	495.5
Active	New Generation	230.0	1,059.0	0.0	0.0	153.6	230.0	104.0	0.0	0.0	1,060.3	0.0	0.0	0.0	0.0	0.0	29.0	463.0	0.0	0.0	675.0	0.0	4,003.9
Active	Upgrade	0.0	38.0	116.0	70.0	0.0	960.0	23.5	0.0	0.0	38.0	0.0	0.0	0.0	0.0	0.0	0.0	18.0	0.0	0.0	0.0	0.0	1,263.5
Total Projects	New Generation	598.2	1,519.0	1,176.0	0.0	176.6	240.0	104.0	0.0	205.0	2,150.8	1,491.0	73.0	522.1	10.0	0.0	588.5	1,151.7	5.0	170.8	2,741.0	0.0	12,922.7
iotai riojects	Upgrade	209.2	234.0	303.7	135.0	0.0	1,272.0	83.5	0.0	0.0	982.7	86.0	0.0	200.0	34.1	0.0	13.0	278.0	32.0	252.3	215.0	0.0	4,330.5

Wind Project Analysis

Table 12-31 shows the status of all wind generation projects by number of projects that entered PJM generation queues from January 1, 1997, through June 30, 2019, by zone. Of the 87 wind projects to achieve in service status, 51 projects (58.6 percent) are located within AEP, ComEd and APS. Of the 120 wind projects currently active, suspended or under construction in the PJM generation queue, 81 projects (67.5 percent) are located within AEP, ComEd and APS.

											Nu	nber of	Project:	5									
	Project																						
Project Status	Classification	AECO	AEP	APS	ATSI	BGE	ComEd	DAY	DEOK	DLCO	Dominion	DPL	EKPC	JCPL	Met-Ed	OVEC	PECO	PENELEC	Pepco	PPL	PSEG	RECO	Total
In Comico	New Generation	1	14	14	0	0	20	0	0	0	1	0	0	0	0	0	0	22	0	8	0	0	80
In Service	Upgrade	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	7
Under	New Generation	0	1	3	0	0	4	0	0	0	2	0	0	0	0	0	0	1	0	0	0	0	11
Construction	Upgrade	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
Suspandad	New Generation	0	4	2	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	1	0	0	9
Suspended	Upgrade	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Mittle due une	New Generation	16	98	42	8	0	103	14	0	0	21	10	1	1	0	0	0	63	0	43	1	0	421
withdrawn	Upgrade	2	1	6	0	0	7	0	0	0	3	0	0	0	0	0	0	6	0	2	0	0	27
A	New Generation	6	25	6	3	0	22	1	0	0	4	4	0	6	0	0	0	0	0	6	0	0	83
Active	Upgrade	0	1	3	0	0	7	0	0	0	0	1	0	0	0	0	0	2	0	0	0	0	14
Tatal Dusiants	New Generation	23	142	67	11	0	149	15	0	0	29	14	1	7	0	0	0	87	0	58	1	0	604
Iotal Projects	Upgrade	2	2	11	0	0	18	0	0	0	3	1	0	0	0	0	0	12	0	2	0	0	51

Table 12-31 Status of all wind generation queue projects by zone (number of projects): January 1997 through June 2019

Table 12-32 shows the status of all wind projects by MW that entered PJM generation queues from January 1, 1997 through June 30, 2019, by zone. Of the 7,973.2 MW of wind generation capacity to achieve the in service status, 6,641.2 MW (83.3 percent) of nameplate capacity is located within AEP, ComEd and APS. Of the 27,723.9 MW of wind generation capacity currently active, suspended or under construction in the PJM generation queue, 14,775.3 MW of generation capacity (53.3 percent) is located within AEP, ComEd and APS.

Table 12-32 Status of all wind generation queue projects by zone (MW): January 1997 through June 2019

												Project	MW										
	Project																						
Project Status	Classification	AECO	AEP	APS	ATSI	BGE	ComEd	DAY	DEOK	DLCO	Dominion	DPL	EKPC	JCPL	Met-Ed	OVEC	PECO	PENELEC	Рерсо	PPL	PSEG	RECO	Total
In Comico	New Generation	7.5	2,738.7	1,004.0	0.0	0.0	2,878.5	0.0	0.0	0.0	102.5	0.0	0.0	0.0	0.0	0.0	0.0	995.0	0.0	226.5	0.0	0.0	7,952.7
In Service	Upgrade	0.0	0.0	0.0	0.0	0.0	20.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.0	20.5
Under	New Generation	0.0	150.0	310.6	0.0	0.0	926.0	0.0	0.0	0.0	312.0	0.0	0.0	0.0	0.0	0.0	0.0	70.0	0.0	0.0	0.0	0.0	1,768.6
Construction	Upgrade	0.0	0.0	0.0	0.0	0.0	187.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	187.5
Suspandad	New Generation	0.0	722.0	293.1	0.0	0.0	0.0	0.0	0.0	0.0	76.6	0.0	0.0	0.0	0.0	0.0	0.0	100.0	0.0	98.0	0.0	0.0	1,289.7
Suspended	Upgrade	0.0	0.0	16.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	16.3
Withdrown	New Generation	3,646.4	20,153.2	3,244.1	1,295.6	0.0	23,869.2	2,028.0	0.0	0.0	4,988.4	2,816.8	150.3	1,104.0	0.0	0.0	0.0	5,277.0	0.0	3,242.1	20.0	0.0	71,835.0
withurawn	Upgrade	5.0	200.0	100.0	0.0	0.0	605.7	0.0	0.0	0.0	114.0	0.0	0.0	0.0	0.0	0.0	0.0	243.4	0.0	6.0	0.0	0.0	1,274.0
Activo	New Generation	2,803.6	5,145.3	429.0	816.1	0.0	5,975.5	100.0	0.0	0.0	2,700.6	719.8	0.0	4,559.2	0.0	0.0	0.0	0.0	0.0	465.1	0.0	0.0	23,714.0
Active	Upgrade	0.0	170.0	24.4	0.0	0.0	425.7	0.0	0.0	0.0	0.0	7.3	0.0	0.0	0.0	0.0	0.0	120.3	0.0	0.0	0.0	0.0	747.8
Total Projects	New Generation	6,457.5	28,909.2	5,280.8	2,111.7	0.0	33,649.1	2,128.0	0.0	0.0	8,180.1	3,536.6	150.3	5,663.2	0.0	0.0	0.0	6,442.0	0.0	4,031.7	20.0	0.0	106,560.0
iotai i i Ojects	Upgrade	5.0	370.0	140.7	0.0	0.0	1,238.9	0.0	0.0	0.0	114.0	7.3	0.0	0.0	0.0	0.0	0.0	364.2	0.0	6.0	0.0	0.0	2,246.1

Solar Project Analysis

Table 12-33 shows the status of all solar generation projects by number of projects that entered PJM generation queues from January 1, 1997, through June 30, 2019, by zone. Of the 153 solar projects to achieve in service status, 9 projects (5.9 percent) are located within AEP, ComEd and APS. Of the 719 solar projects currently active, suspended or under construction in the PJM generation queue, 210 projects (29.2 percent) are located within AEP, ComEd and APS.

											Nu	nber of	[•] Projects	5									
	Project																						
Project Status	Classification	AECO	AEP	APS	ATSI	BGE	ComEd	DAY	DEOK	DLCO	Dominion	DPL	EKPC	JCPL	Met-Ed	OVEC	PECO	PENELEC	Рерсо	PPL	PSEG	RECO	Total
In Comise	New Generation	7	4	4	0	1	1	1	0	0	21	11	0	42	0	0	1	0	0	2	41	0	136
In Service	Upgrade	0	0	0	0	0	0	0	0	0	2	8	0	7	0	0	0	0	0	0	0	0	17
Under	New Generation	0	0	1	0	0	0	0	0	0	5	1	0	3	0	0	0	0	1	0	6	0	17
Construction	Upgrade	0	0	0	0	0	0	0	0	0	2	1	0	0	0	0	0	0	0	0	0	0	3
Sugnandad	New Generation	0	5	13	0	0	0	1	0	0	1	0	0	3	2	0	0	0	0	0	1	0	26
Suspended	Upgrade	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
Mitte due une	New Generation	168	90	65	11	12	31	14	12	0	163	120	4	180	14	1	6	16	14	29	83	0	1,033
withdrawn	Upgrade	2	2	1	0	0	2	0	0	0	11	1	0	8	0	0	0	0	0	0	1	0	28
A	New Generation	24	102	42	19	1	33	19	5	4	188	41	17	16	16	0	1	22	16	19	14	1	600
Active	Upgrade	1	9	1	1	0	4	2	3	1	32	4	2	2	1	0	0	0	1	5	2	1	72
Tatal Dualasta	New Generation	199	201	125	30	14	65	35	17	4	378	173	21	244	32	1	8	38	31	50	145	1	1,812
iotai riojects	Upgrade	3	11	2	1	0	6	2	3	1	47	14	2	17	2	0	0	0	1	5	3	1	121

Table 12-33 Status of all solar generation queue projects by zone (number of projects): January 1997 through June 2019

Table 12-34 shows the status of all solar projects by MW that entered PJM generation queues from January 1, 1997 through June 30, 2019, by zone. Of the 1,488.4 MW of solar generation capacity to achieve in service status, 76.7 MW (5.2 percent) of nameplate capacity is located within AEP, ComEd and APS. Of the 48,243.9 MW of solar generation capacity currently active, suspended or under construction in the PJM generation queue, 18,520.3 MW of generation capacity (38.4 percent) is located within AEP, ComEd and APS.

Table 12-34 Status of all solar generation queue projects by zone (MW): January 1997 through June 2019

												Project	MW										
	Project																						
Project Status	Classification	AECO	AEP	APS	ATSI	BGE	ComEd	DAY	DEOK	DLCO	Dominion	DPL	EKPC	JCPL	Met-Ed	OVEC	PECO	PENELEC	Pepco	PPL	PSEG	RECO	Total
In Comico	New Generation	57.3	14.7	53.0	0.0	1.1	9.0	2.5	0.0	0.0	675.9	130.4	0.0	295.3	0.0	0.0	3.3	0.0	0.0	15.0	213.5	0.0	1,471.0
In Service	Upgrade	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.1	0.0	0.0	14.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	17.4
Under	New Generation	0.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0	0.0	383.3	20.0	0.0	51.9	0.0	0.0	0.0	0.0	2.5	0.0	33.3	0.0	501.0
Construction	Upgrade	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	13.9	150.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	163.9
C	New Generation	0.0	60.0	244.4	0.0	0.0	0.0	20.0	0.0	0.0	91.0	0.0	0.0	8.0	38.0	0.0	0.0	0.0	0.0	0.0	6.0	0.0	467.4
Suspended	Upgrade	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20.0
Withdrown	New Generation	1,738.2	7,056.7	1,793.7	429.3	53.3	1,916.8	523.9	279.4	0.0	10,220.9	1,581.2	309.9	1,424.7	502.0	78.0	51.4	273.7	180.6	403.7	518.3	0.0	29,335.9
withurawn	Upgrade	10.0	106.0	0.0	0.0	0.0	20.0	0.0	0.0	0.0	674.0	0.0	0.0	23.8	0.0	0.0	0.0	0.0	0.0	0.0	1.3	0.0	835.1
Activo	New Generation	611.5	11,627.3	1,684.0	1,763.8	4.0	3,987.5	2,197.7	445.0	63.0	15,718.4	1,484.2	1,661.0	183.0	798.1	0.0	18.0	1,467.5	179.3	676.2	44.0	40.0	44,653.4
Active	Upgrade	0.0	452.0	75.0	20.0	0.0	380.0	40.0	85.0	8.3	1,061.8	75.0	120.0	7.6	20.0	0.0	0.0	0.0	9.1	60.0	4.4	20.0	2,438.2
Total Projects	New Generation	2,407.0	18,758.8	3,785.2	2,193.1	58.4	5,913.3	2,744.1	724.4	63.0	27,089.5	3,215.8	1,970.9	1,962.9	1,338.1	78.0	72.7	1,741.2	362.4	1,094.9	815.2	40.0	76,428.6
iotal Projects	Upgrade	10.0	558.0	75.0	20.0	0.0	400.0	40.0	85.0	8.3	1,752.8	225.0	120.0	45.7	40.0	0.0	0.0	0.0	9.1	60.0	5.7	20.0	3,474.6

Relationship Between Project Developer and Transmission Owner

A transmission owner (TO) is an "entity that owns, leases or otherwise has a possessory interest in facilities used for the transmission of electric energy in interstate commerce under the tariff."³⁷ Where the transmission owner is a vertically integrated company that also owns generation, there is a potential conflict of interest when the transmission owner evaluates the interconnection requirements of new generation which is a competitor to the generation of the parent company and when the transmission owner evaluates the interconnection requirements of new generation which is part of the same company as the transmission owner. There is also a potential conflict of interest when the transmission owner evaluates the interconnection requirements of a nonincumbent transmission developer which is a competitor of the transmission owner. The MMU recommends outsourcing interconnection studies to an independent party to avoid potential conflicts of interest.

Table 12-35 shows the relationship between the project developer and transmission owner for all project MW that have entered the PJM generation queue from January 1, 1997, through June 30, 2019, by transmission owner and unit type. A project where the developer is affiliated with the transmission owner is classified as related. A project where the developer is not affiliated with the transmission owner is classified as unrelated. For example, 36.0 MW of combined cycle generation projects that have entered the PJM generation queue in DEOK were projects developed by Duke Energy or subsidiaries of Duke Energy, the transmission owner for DEOK. These project MW are classified as related. There have been 667.5 MW of combined cycle projects that have entered the PJM generation queue in DEOK by developers not affiliated with Duke Energy. These project MW are classified as unrelated.

Of the 560,874.6 MW that have entered the queue during the time period of January 1, 1997, through June 30, 2019, 62,562.2 MW (11.2 percent) have been submitted by transmission owners building in their own service territory. PSEG is the transmission owner with the highest percentage of affiliates building in their own service territory. Of the 36,456.6 MW that entered the queue during the time period of January 1, 1997, through June 30, 2019, 14,287.9 MW (39.2 percent) have been submitted by PSEG or one of their affiliated companies.

³⁷ See OATT § 1 (Transmission Owner).

												MW	by Unit Typ	e								
			Number			CT -				Hydro -	Hydro -		RICE -					Steam -				
Parent	Transmission	Related to	of			Natural		CT -		Pumped	Run of		Natural		RICE -		Steam -	Natural	Steam	Steam -		
Company	Owner	Developer	Projects	Battery	CC	Gas	CT - Oil	Other	Fuel Cell	Storage	River	Nuclear	Gas	RICE - Oil	Other	Solar	Coal	Gas	- Oil	Other	Wind	Total
AEP	AEP	Related	48	16.0	680.0	0.0	0.0	0.0	0.0	34.0	0.0	214.0	0.0	0.0	0.0	142.7	3,918.0	90.0	0.0	0.0	0.0	5,094.7
		Unrelated	537	1,279.6	22,558.5	1,753.0	7.5	127.3	0.0	0.0	547.4	0.0	12.0	0.0	75.4	19,174.1	10,368.0	0.0	0.0	492.0	29,279.2	85,673.9
AES	DAY	Related	13	20.0	0.0	38.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	21.5	1,347.5	0.0	0.0	0.0	0.0	1,427.0
		Unrelated	60	39.9	1,150.0	149.5	0.0	1.9	0.0	0.0	0.0	0.0	0.0	0.0	10.0	2,762.6	0.0	0.0	0.0	0.0	2,128.0	6,241.9
DLCO	DLCO	Related	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		Unrelated	25	20.0	665.0	205.0	40.0	19.2	0.0	0.0	106.0	1,879.0	0.0	0.0	0.0	71.3	2,810.0	0.0	0.0	0.0	0.0	5,815.5
Dominion	Dominion	Related	102	0.0	12,364.0	907.7	100.0	0.0	0.0	340.0	0.0	1,944.0	0.0	0.0	60.0	1,316.2	301.0	0.0	0.0	4.0	146.0	17,482.9
<u> </u>	DEOK	Unrelated	534	625.6	9,044.5	2,225.8	0.5	227.3	0.0	0.0	35.0	0.0	0.0	10.0	119.4	27,526.1	20.0	0.0	0.0	316.3	8,148.1	48,298.7
Duke	DEOK	Related	/	23.8	36.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.4	0.0	0.0	0.0	0.0	0.0	1 775 5
FKDC	FKDC	Unrelated	29	68.2	667.5	0.0	0.0	0.0	0.0	0.0	112.0	0.0	0.0	0.0	4.8	803.0	120.0	0.0	0.0	0.0	0.0	1,//5.5
EKPL	EKPU	Related	2	20.2	170.0	72.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2 000 0	0.0	0.0	0.0	0.0	150.2	2 E04 E
Evelop	AECO	Peloted		20.3	720.0	73.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2,030.3	0.0	0.0	0.0	0.0	150.5	720 2
EXCION	ALCO	Inclated	309	1/1.0	8 8/8 /	807.4	380.0	20.7	2.8	0.0	0.0	0.0	2.0	5.0	10.3	2 408 7	15.0	5.5	0.0	10.0	6.462.5	10 110 3
	BGE	Related	14	20.0	250.0	10.0	0.0	20.7	2.0	0.0	0.0	108.5	2.0	0.0	8.5	2,400.7	10.0	101.0	0.0	10.0	0,402.5	528.0
	DOL	Unrelated	58	40.6	3 012 1	166.6	18.0	133.0	0.0	0.0	0.0	3 280 0	1.3	0.0	0.0	38.4	0.0	2.5	0.0	25.0	0.0	6 717 9
	ComEd	Related	16	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1 185 0	0.0	0.0	0.0	9.0	0.0	0.0	0.0	0.0	0.0	1 194 0
	comed	Unrelated	365	647.5	15.530.5	1.512.0	42.0	65.2	0.0	0.0	22.7	0.0	35.0	0.0	67.7	6.304.3	1.926.0	91.0	0.0	90.0	34.888.0	61.221.8
-	DPI	Related	7	0.0	1.365.0	351.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7.4	0.0	0.0	0.0	0.0	0.0	1.723.4
		Unrelated	293	153.0	5,611.6	1,226.0	600.9	42.6	0.0	0.0	0.0	0.0	0.0	0.0	84.6	3,433.4	653.0	15.0	0.0	65.0	3,543.9	15,429.0
	PECO	Related	33	40.0	6,965.0	5.0	89.5	0.0	0.0	0.0	265.0	437.8	0.0	0.0	0.0	0.0	7.0	0.0	0.0	0.0	0.0	7,809.3
		Unrelated	80	5.3	20,355.5	596.5	2.0	15.0	0.0	0.0	0.0	0.0	0.0	17.0	3.7	72.7	0.0	0.0	0.0	0.0	0.0	21,067.7
	Pepco	Related	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		Unrelated	95	20.0	23,325.9	37.0	30.0	9.0	0.0	0.0	0.0	1,640.0	32.0	0.0	3.5	371.5	0.0	0.0	0.0	0.0	0.0	25,468.9
FirstEnergy	APS	Related	4	0.0	1,453.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1,710.0	0.0	0.0	0.0	0.0	3,163.0
		Unrelated	383	280.9	26,982.8	1,479.7	0.0	84.4	0.0	0.0	623.3	0.0	140.0	53.8	25.4	3,860.2	4,092.0	0.0	0.0	184.4	5,421.5	43,228.3
	ATSI	Related	6	0.0	1,678.0	0.0	0.0	0.0	0.0	0.0	0.0	16.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1,694.0
		Unrelated	90	76.4	13,589.0	135.0	5.0	166.4	0.0	0.0	0.0	0.0	59.7	0.0	6.9	2,213.1	0.0	16.5	0.0	0.0	2,111.7	18,379.7
	JCPL	Related	2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20.0	0.0	0.0	0.0	0.0	12.0	0.0	0.0	0.0	0.0	0.0	32.0
		Unrelated	376	509.8	15,751.4	722.1	0.0	4.8	0.6	0.0	1.6	0.0	0.6	0.0	12.8	1,996.6	0.0	0.0	0.0	30.0	5,663.2	24,693.5
	Met-Ed	Related	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	DENELEO	Unrelated	108	23.0	17,458.9	44.1	1,196.9	52.1	0.0	0.0	0.0	93.0	0.0	8.0	23.2	1,378.1	0.0	0.0	0.0	84.0	0.0	20,361.3
	PENELEC	Related	4	0.0	534.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1,860.0	0.0	0.0	0.0	0.0	2,399.0
0\/EC	OVEC	Deleted	264	257.4	18,747.9	1,424.7	0.0	214.4	0.0	16.0	46.3	0.0	341.8	8.0	14.8	1,741.2	561.0	590.0	0.0	525.0	6,806.2	31,294.4
OVEC	UVEC	Related	1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	79.0	0.0	0.0	0.0	0.0	0.0	79.0
DDI	DDI	Peloted	21	0.0	2 261 0	0.0	0.0	0.0	0.0	0.0	100.0	1 600 0	0.0	0.0	0.0	10.0	111.0	0.0	0.0	0.0	0.0	/ 100.9
	IIL	Incidicu	21	E44.0	2,201.0 22,200 E	422.1	0.0	224 E	0.0	1 500.0	142.6	200.0	10.0	2.4	44.7	1 125 1	6 906 6	0.0	0.0	21.0	4 027 7	20 707 1
PSEG	PSEG	Related	230	0.0	23,235.5	1 818 1	0.0	234.5	0.0	1,300.0	142.0	381.0	19.9	0.0	44.7	1,133.1	24.0	44.0	0.0	0.0	4,037.7	1/ 287.9
1 520	1 320	Inrelated	212	14.5	18 640 4	1 137 9	608.0	62.5	<u></u>	0.0	1 000 0	0.0	10.6	0.0	13.7	636.2	0.0	20.0	0.0	0.0	20.0	22 168 7
Con Ed	RECO	Related	0	0.0	0.0	0.0	0.0	02.5	5	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0	0.0
2011 Eu		Unrelated	4	0.0	6.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0	66.9
Total		Related	393	119.8	40.973.9	3.134.8	189.5	0.0	0.0	374.0	394.0	5.886.3	0.0	0.0	68.5	1.747.9	9.288.5	235.0	0.0	4.0	146.0	62.562.2
		Unrelated	4107	4.767.0	245,416,1	14,118,4	2.938.8	1.480.3	8.3	1.516.0	2.637.3	7.280.0	654.9	104.2	520.9	78,155,3	27.461.6	740.5	0.0	1.852.7	108.660.1	498.312.4

Table 12-35 Relationship between project developer and transmission owner for all interconnection queue projects MW by unit type: June 30, 2019

Combined Cycle Project Developer and Transmission Owner Relationships

Table 12-36 shows the relationship between the project developer and transmission owner for all combined cycle project MW that have entered the PJM generation queue from January 1, 1997 through June 30, 2019, by transmission owner and project status. Of the 41,274.4 combined cycle project MW that have achieved in service or under construction status during this time period, 9,156.0 MW (22.2 percent) have been developed by transmission owners building in their own service territory. EKPC is the transmission owner with the highest percentage of affiliates building combined cycle projects in their own service territory. Of the 991.8 MW that entered the queue during the time period of January 1, 1997, through June 30, 2019, 821.8 MW (82.9 percent) have been submitted by EKPC or one of their affiliated companies.

					MW by Proj	ect Status		
Parent	Transmission	Related to			Under			
Company	Owner	Developer	Active	In Service	Construction	Suspended	Withdrawn	Total
AEP	AEP	Related	100.0	580.0	0.0	0.0	0.0	680.0
		Unrelated	7,231.0	2,682.0	100.0	585.0	11,960.5	22,558.5
AES	DAY	Related	0.0	0.0	0.0	0.0	0.0	0.0
		Unrelated	1,150.0	0.0	0.0	0.0	0.0	1,150.0
DLCO	DLCO	Related	0.0	0.0	0.0	0.0	0.0	0.0
		Unrelated	0.0	0.0	0.0	0.0	665.0	665.0
Dominion	Dominion	Related	90.0	4,773.0	0.0	0.0	7,501.0	12,364.0
		Unrelated	1,690.0	1,954.1	0.0	1,060.0	4,340.4	9,044.5
Duke	DEOK	Related	0.0	0.0	0.0	0.0	36.0	36.0
		Unrelated	0.0	533.0	0.0	0.0	134.5	667.5
EKPC	EKPC	Related	0.0	0.0	0.0	0.0	821.8	821.8
		Unrelated	0.0	0.0	0.0	0.0	170.0	170.0
Exelon	AECO	Related	0.0	0.0	0.0	0.0	730.0	730.0
		Unrelated	1,068.6	879.0	0.0	0.0	6,900.8	8,848.4
	BGE	Related	0.0	130.0	0.0	0.0	120.0	250.0
		Unrelated	0.0	10.0	0.0	0.0	3,002.1	3,012.1
	ComEd	Related	0.0	0.0	0.0	0.0	0.0	0.0
		Unrelated	5,342.6	1,233.6	0.0	0.0	8,954.3	15,530.5
	DPL	Related	0.0	60.0	0.0	0.0	1,305.0	1,365.0
		Unrelated	0.0	361.2	0.0	451.0	4,799.4	5,611.6
	PECO	Related	0.0	0.0	0.0	0.0	6,965.0	6,965.0
		Unrelated	67.0	3,638.5	35.0	0.0	16,615.0	20,355.5
	Рерсо	Related	0.0	0.0	0.0	0.0	0.0	0.0
		Unrelated	0.0	1,649.1	139.5	1,038.1	20,499.2	23,325.9
FirstEnergy	APS	Related	0.0	525.0	0.0	0.0	928.0	1,453.0
		Unrelated	7,489.7	1,720.0	0.0	1,140.0	16,633.1	26,982.8
	ATSI	Related	0.0	0.0	0.0	0.0	1,678.0	1,678.0
		Unrelated	3,615.0	1,905.0	2,190.0	0.0	5,879.0	13,589.0
	JCPL	Related	0.0	0.0	0.0	0.0	0.0	0.0
		Unrelated	105.0	1,775.8	0.0	495.0	13,375.6	15,751.4
	Met-Ed	Related	0.0	0.0	0.0	0.0	0.0	0.0
		Unrelated	113.9	2,602.0	0.0	0.0	14,743.0	17,458.9
	PENELEC	Related	0.0	0.0	0.0	0.0	534.0	534.0
		Unrelated	268.0	942.3	1,100.0	0.0	16,437.6	18,747.9
OVEC	OVEC	Related	0.0	0.0	0.0	0.0	0.0	0.0
		Unrelated	0.0	0.0	0.0	0.0	0.0	0.0
PPL	PPL	Related	0.0	600.0	0.0	0.0	1,661.0	2,261.0
		Unrelated	1,327.8	5,862.0	0.0	0.0	16,109.7	23,299.5
PSEG	PSEG	Related	51.1	2,488.0	0.0	0.0	9,297.0	11,836.1
		Unrelated	1,741.4	806.4	0.0	0.0	16,092.6	18,640.4
Con Ed	RECO	Related	0.0	0.0	0.0	0.0	0.0	0.0
		Unrelated	0.0	0.0	0.0	0.0	6.9	6.9
Total		Related	241.1	9,156.0	0.0	0.0	31,576.8	40,973.9
		Unrelated	31 210 0	28 553 9	3 564 5	4 769 1	177 318 5	245 416 1

Table 12-36 Relationship between project developer and transmission owner fo	r
all combined cycle project MW in PJM interconnection queue: June 30, 2019	

Combustion Turbine – Natural Gas Project Developer and Transmission Owner Relationships

Table 12-37 Relationship between project developer and transmission owner for all CT – natural gas project MW in PJM interconnection queue: June 30, 2019

Table 12-37 shows the relationship between the project developer and transmission owner for all CT – natural gas project MW that have entered the PJM generation queue from January 1, 1997 through June 30, 2019, by transmission owner and project status. Of the 9,177.0 CT – natural gas project MW that have achieved in service or under construction status during this time period, 2,107.0 (23.0 percent) have been developed by Transmission Owners building in their own service territory. PSEG is the transmission owner with the highest percentage of affiliates building CT – natural gas projects in their own service territory. Of the 2,956.0 MW that entered the queue during the time period of January 1, 1997, through June 30, 2019, 1,818.1 MW (61.5 percent) have been submitted by PSEG or one of their affiliated companies.

		MW by Project Status												
Parent	Transmission	Related to			Under									
Company	Owner	Developer	Active	In Service	Construction	Suspended	Withdrawn	Total						
AEP	AEP	Related	0.0	0.0	0.0	0.0	0.0	0.0						
		Unrelated	1,097.0	190.0	0.0	0.0	466.0	1,753.0						
AES	DAY	Related	0.0	38.0	0.0	0.0	0.0	38.0						
		Unrelated	127.5	22.0	0.0	0.0	0.0	149.5						
DLCO	DLCO	Related	0.0	0.0	0.0	0.0	0.0	0.0						
		Unrelated	0.0	0.0	205.0	0.0	0.0	205.0						
Dominion	Dominion	Related	64.7	786.0	0.0	0.0	57.0	907.7						
		Unrelated	1,033.6	1,116.7	0.0	0.0	75.5	2,225.8						
Duke	DEOK	Related	0.0	0.0	0.0	0.0	0.0	0.0						
		Unrelated	0.0	0.0	0.0	0.0	0.0	0.0						
EKPC	EKPC	Related	0.0	0.0	0.0	0.0	0.0	0.0						
		Unrelated	0.0	0.0	0.0	0.0	73.0	73.0						
Exelon	AECO	Related	0.0	0.0	0.0	0.0	0.0	0.0						
		Unrelated	230.0	404.4	0.0	0.0	173.0	807.4						
	BGE	Related	0.0	10.0	0.0	0.0	0.0	10.0						
		Unrelated	153.6	13.0	0.0	0.0	0.0	166.6						
	ComEd	Related	0.0	0.0	0.0	0.0	0.0	0.0						
		Unrelated	1,190.0	257.0	48.0	0.0	17.0	1,512.0						
	DPL	Related	0.0	351.0	0.0	0.0	0.0	351.0						
		Unrelated	0.0	1,226.0	0.0	0.0	0.0	1,226.0						
	PECO	Related	0.0	5.0	0.0	0.0	0.0	5.0						
		Unrelated	29.0	567.0	0.0	0.0	0.5	596.5						
	Рерсо	Related	0.0	0.0	0.0	0.0	0.0	0.0						
		Unrelated	0.0	37.0	0.0	0.0	0.0	37.0						
FirstEnergy	APS	Related	0.0	0.0	0.0	0.0	0.0	0.0						
		Unrelated	116.0	1,363.7	0.0	0.0	0.0	1,479.7						
	ATSI	Related	0.0	0.0	0.0	0.0	0.0	0.0						
		Unrelated	70.0	40.0	0.0	0.0	25.0	135.0						
	JCPL	Related	0.0	0.0	0.0	0.0	0.0	0.0						
		Unrelated	0.0	522.1	0.0	200.0	0.0	722.1						
	Met-Ed	Related	0.0	0.0	0.0	0.0	0.0	0.0						
		Unrelated	0.0	44.1	0.0	0.0	0.0	44.1						
	PENELEC	Related	0.0	5.0	0.0	0.0	0.0	5.0						
		Unrelated	481.0	381.9	0.0	0.0	561.8	1,424.7						
OVEC	OVEC	Related	0.0	0.0	0.0	0.0	0.0	0.0						
		Unrelated	0.0	0.0	0.0	0.0	0.0	0.0						
PPL	PPL	Related	0.0	0.0	0.0	0.0	0.0	0.0						
		Unrelated	0.0	403.2	0.0	0.0	19.9	423.1						
PSEG	PSEG	Related	0.0	912.0	0.0	0.0	906.1	1,818.1						
		Unrelated	675.0	228.9	0.0	0.0	234.0	1,137.9						
Con Ed	RECO	Related	0.0	0.0	0.0	0.0	0.0	0.0						
		Unrelated	0.0	0.0	0.0	0.0	0.0	0.0						
Total		Related	64.7	2,107.0	0.0	0.0	963.1	3,134.8						
		Unrelated	5,202.7	6,817.0	253.0	200.0	1,645.7	14,118.4						

Wind Project Developer and Transmission Owner Relationships

Table 12-38 shows the relationship between the project developer and transmission owner for all wind project MW that have entered the PJM generation queue from January 1, 1997 through June 30, 2019, by transmission owner and project status. Of the 9,929.3 wind project MW that have achieved in service or under construction status during this time period, 12.0 MW (0.1 percent) have been developed by transmission owners building in their own service territory. Dominion is the transmission owner with the highest percentage of affiliates building wind projects in their own service territory. Of the 8,294.1 MW that entered the queue during the time period of January 1, 1997, through June 30, 2019, 146.0 MW (1.8 percent) have been submitted by Dominion or one of their affiliated companies.

					MW by Proj	ect Status		
Parent	Transmission	Related to			Under			
Company	Owner	Developer	Active	In Service	Construction	Suspended	Withdrawn	Total
AEP	AEP	Related	0.0	0.0	0.0	0.0	0.0	0.0
		Unrelated	5,315.3	2,738.7	150.0	722.0	20,353.2	29,279.2
AES	DAY	Related	0.0	0.0	0.0	0.0	0.0	0.0
		Unrelated	100.0	0.0	0.0	0.0	2,028.0	2,128.0
DLCO	DLCO	Related	0.0	0.0	0.0	0.0	0.0	0.0
		Unrelated	0.0	0.0	0.0	0.0	0.0	0.0
Dominion	Dominion	Related	0.0	0.0	12.0	0.0	134.0	146.0
		Unrelated	2,700.6	102.5	300.0	76.6	4,968.4	8,148.1
Duke	DEOK	Related	0.0	0.0	0.0	0.0	0.0	0.0
		Unrelated	0.0	0.0	0.0	0.0	0.0	0.0
EKPC	EKPC	Related	0.0	0.0	0.0	0.0	0.0	0.0
		Unrelated	0.0	0.0	0.0	0.0	150.3	150.3
Exelon	AECO	Related	0.0	0.0	0.0	0.0	0.0	0.0
		Unrelated	2,803.6	7.5	0.0	0.0	3,651.4	6,462.5
	BGE	Related	0.0	0.0	0.0	0.0	0.0	0.0
		Unrelated	0.0	0.0	0.0	0.0	0.0	0.0
	ComEd	Related	0.0	0.0	0.0	0.0	0.0	0.0
		Unrelated	6,401.2	2,898.5	1,113.5	0.0	24,474.8	34,888.0
	DPL	Related	0.0	0.0	0.0	0.0	0.0	0.0
		Unrelated	727.1	0.0	0.0	0.0	2,816.8	3,543.9
	PECO	Related	0.0	0.0	0.0	0.0	0.0	0.0
		Unrelated	0.0	0.0	0.0	0.0	0.0	0.0
	Pepco	Related	0.0	0.0	0.0	0.0	0.0	0.0
		Unrelated	0.0	0.0	0.0	0.0	0.0	0.0
FirstEnergy	APS	Related	0.0	0.0	0.0	0.0	0.0	0.0
		Unrelated	453.4	1,004.0	310.6	309.4	3,344.1	5,421.5
	ATSI	Related	0.0	0.0	0.0	0.0	0.0	0.0
		Unrelated	816.1	0.0	0.0	0.0	1,295.6	2,111.7
	JCPL	Related	0.0	0.0	0.0	0.0	0.0	0.0
		Unrelated	4,559.2	0.0	0.0	0.0	1,104.0	5,663.2
	Met-Ed	Related	0.0	0.0	0.0	0.0	0.0	0.0
		Unrelated	0.0	0.0	0.0	0.0	0.0	0.0
	PENELEC	Related	0.0	0.0	0.0	0.0	0.0	0.0
		Unrelated	120.3	995.5	70.0	100.0	5,520.3	6,806.2
OVEC	OVEC	Related	0.0	0.0	0.0	0.0	0.0	0.0
		Unrelated	0.0	0.0	0.0	0.0	0.0	0.0
PPL	PPL	Related	0.0	0.0	0.0	0.0	0.0	0.0
		Unrelated	465.1	226.5	0.0	98.0	3,248.1	4,037.7
PSEG	PSEG	Related	0.0	0.0	0.0	0.0	0.0	0.0
		Unrelated	0.0	0.0	0.0	0.0	20.0	20.0
Con Ed	RECO	Related	0.0	0.0	0.0	0.0	0.0	0.0
		Unrelated	0.0	0.0	0.0	0.0	0.0	0.0
Total		Related	0.0	0.0	12.0	0.0	134.0	146.0
		Unrelated	24.461.8	7 973 2	1 944 1	1 306 0	72 975 0	108 660 1

Table 12-38 Relationship between project developer and transmission owner
for all wind project MW in PJM interconnection queue: June 30, 2019

Solar Project Developer and Transmission Owner Relationships

Table 12-39 Relationship between project developer and transmission owner for all solar project MW in PJM interconnection queue: June 30, 2019

MW by Project Status

Table 12-39 shows the relationship between the project developer and transmission owner for all solar project MW that have entered the PJM generation queue from January 1, 1997 through June 30, 2019, by transmission owner and project status. Of the 2,153.3 solar project MW that have achieved in service or under construction status during this time period, 815.8 MW (37.9 percent) have been developed by transmission owners building in their own service territory. BGE is the transmission owner with the highest percentage of affiliates building solar projects in their own service territory. Of the 58.4 MW that entered the queue during the time period of January 1, 1997, through June 30, 2019, 20.0 MW (34.2 percent) have been submitted by BGE or one of their affiliated companies.

Parent	Transmission	Related to			Under			
Company	Owner	Developer	Active	In Service	Construction	Suspended	Withdrawn	Total
AEP	AEP	Related	68.0	14.7	0.0	10.0	50.0	142.7
		Unrelated	12,011.3	0.0	0.0	50.0	7,112.7	19,174.1
AES	DAY	Related	0.0	0.0	0.0	0.0	21.5	21.5
		Unrelated	2,237.7	2.5	0.0	20.0	502.4	2,762.6
DLCO	DLCO	Related	0.0	0.0	0.0	0.0	0.0	0.0
		Unrelated	71.3	0.0	0.0	0.0	0.0	71.3
Dominion	Dominion	Related	437.9	349.2	297.2	0.0	231.9	1,316.2
		Unrelated	16,342.3	329.8	100.0	91.0	10,663.0	27,526.1
Duke	DEOK	Related	0.0	0.0	0.0	0.0	6.4	6.4
		Unrelated	530.0	0.0	0.0	0.0	273.0	803.0
EKPC	EKPC	Related	0.0	0.0	0.0	0.0	0.0	0.0
		Unrelated	1,781.0	0.0	0.0	0.0	309.9	2,090.9
Exelon	AECO	Related	0.0	0.0	0.0	0.0	8.3	8.3
		Unrelated	611.5	57.3	0.0	0.0	1,739.9	2,408.7
	BGE	Related	0.0	0.0	0.0	0.0	20.0	20.0
		Unrelated	4.0	1.1	0.0	0.0	33.3	38.4
	ComEd	Related	0.0	9.0	0.0	0.0	0.0	9.0
		Unrelated	4.367.5	0.0	0.0	0.0	1.936.8	6.304.3
	DPL	Related	. 0.0	7.4	0.0	0.0	0.0	7.4
		Unrelated	1.559.2	123.0	170.0	0.0	1.581.2	3.433.4
	PECO	Related	. 0.0	0.0	0.0	0.0	0.0	0.0
		Unrelated	18.0	3.3	0.0	0.0	51.4	72.7
	Pepco	Related	0.0	0.0	0.0	0.0	0.0	0.0
		Unrelated	188.4	0.0	2.5	0.0	180.6	371.5
FirstEnergy	APS	Related	0.0	0.0	0.0	0.0	0.0	0.0
5/		Unrelated	1,759.0	53.0	10.0	244.4	1,793.7	3,860.2
	ATSI	Related	0.0	0.0	0.0	0.0	0.0	0.0
		Unrelated	1,783.8	0.0	0.0	0.0	429.3	2,213.1
-	JCPL	Related	0.0	0.0	0.0	0.0	12.0	12.0
		Unrelated	190.6	309.6	51.9	8.0	1,436.5	1,996.6
	Met-Ed	Related	0.0	0.0	0.0	0.0	0.0	0.0
		Unrelated	818.1	0.0	0.0	58.0	502.0	1,378.1
	PENELEC	Related	0.0	0.0	0.0	0.0	0.0	0.0
		Unrelated	1,467.5	0.0	0.0	0.0	273.7	1,741.2
OVEC	OVEC	Related	0.0	0.0	0.0	0.0	0.0	0.0
		Unrelated	0.0	0.0	0.0	0.0	78.0	78.0
PPL	PPL	Related	19.8	0.0	0.0	0.0	0.0	19.8
		Unrelated	716.4	15.0	0.0	0.0	403.7	1,135.1
PSEG	PSEG	Related	5.5	121.1	17.2	0.0	40.9	184.7
		Unrelated	42.9	92.4	16.1	6.0	478.7	636.2
Con Ed	RECO	Related	0.0	0.0	0.0	0.0	0.0	0.0
		Unrelated	60.0	0.0	0.0	0.0	0.0	60.0
Total		Related	531.2	501.4	314.4	10.0	391.0	1.747.9
		Unrelated	46,560.4	987.0	350.5	477.4	29,780.0	78,155.3

Regional Transmission Expansion Plan (RTEP)³⁸

The PJM RTEP process is designed to identify needed transmission system additions and improvements to continue to provide reliable service throughout the RTO. The objective of the RTEP process is to provide PJM with an optimal set of solutions necessary to solve reliability issues, operational performance issues and transmission constraints.

The RTEP process initially considered only factors such as load growth and the generation interconnection requests in its development of the 15 year plan. Currently, the RTEP process includes a broader range of inputs including the effects of public policy, market efficiency, interregional coordination and the effects of aging infrastructure.

RTEP Process

The PJM RTEP process is a 24 month planning process that identifies reliability issues for the next 15 year period. This 24 month planning process includes a process to build power flow models that represent the expected future system topology, studies to identify issues, stakeholder input and PJM Board of Manager approvals. The 24 month planning process is made up of overlapping 18 month planning cycles to identify and develop shorter lead time transmission upgrades and one 24 month planning cycle to provide sufficient time for the identification and development of longer lead time transmission upgrades that may be required to satisfy planning criteria.

Backbone Facilities

PJM baseline transmission projects are implemented to resolve reliability criteria violations. PJM backbone transmission projects are a subset of significant baseline projects, which are intended to resolve multiple reliability criteria violations and congestion issues and which may have substantial impacts on energy and capacity markets. There are currently six backbone projects under development, the Surry-Skiffes Creek 500kV Line, the Loudoun-Brambleton 500kV Line, the conversion of the Marion-Bayonne and Bayway-Linden lines

from 138 kV to 345 kV, the conversion of the Robinson Park-Sorenson lines to double circuit 345kV and the Meadow Lake-Reynolds 345kV Line rebuild.³⁹

Market Efficiency Process

PJM's Regional Transmission Expansion Plan (RTEP) process includes a market efficiency analysis. The stated purpose of the market efficiency analysis is: to determine which reliability based enhancements have economic benefit if accelerated; to identify new transmission enhancements that result in economic benefits; and to identify economic benefits associated with modification to existing RTEP reliability based enhancements that when modified would relieve one or more economic constraints. PJM identifies the economic benefit of proposed transmission projects based on production cost analyses.⁴⁰ PJM presents the RTEP market efficiency enhancements to the PJM Board, along with stakeholder input, for Board approval.

To be recommended to the PJM Board of Managers for approval, the relative benefits and costs of the economic based enhancement or expansion must meet a benefit/cost ratio threshold of at least 1.25:1. The benefit/cost ratio is the ratio of the present value of the total annual benefit for 15 years to the present value of the total annual cost for the first 15 years of the life of the enhancement or expansion.

The market efficiency process is comprised of a 12 month cycle and a 24 month cycle, both of which begin and end on the calendar year. The 12 month cycle is used for analysis of modifications and accelerations to approved RTEP projects only. The 24 month cycle is used for analysis of new economic transmission projects for years five through 15. This long-term proposal window takes place concurrent with the long-term proposal window for reliability projects.⁴¹

PJM's first market efficiency analysis was performed in 2013, prior to Order 1000. That analysis evaluated the historical sources of congestion on 25

³⁸ The material in this section is based in part on the PJM Manual 148: PJM Region Transmission Planning Process. See PJM. "PJM Manual 14B: PJM Region Transmission Planning Process," Rev. 44 (Feb. 21, 2019).

³⁹ See PJM. "2017 RTEP Process Scope and Input Assumptions White Paper," at 25. .

⁴⁰ See PJM. "PJM Regional Transmission Expansion Plan: 2016," (February 28, 2017) < http://www.pjm.com/-/media/library/reportsnotices/2016-rtep/2016-rtep-books-1-3.ashx?la=en>.

⁴¹ See PJM. "PJM Market Efficiency Modeling Practices," (February 2, 2017) . en>.

flowgates.⁴² The proposal window was open from August 12, 2013, through September 26, 2013. PJM received 38 proposals from six entities. One project was approved by the PJM Board.

The first market efficiency cycle conducted under Order 1000 was performed during the 2014/2015 RTEP long term window. That analysis evaluated the historical sources of congestion on 77 flowgates, 57 of which could be addressed by market efficiency projects. The proposal window was open from October 30, 2014, through February 27, 2015. PJM received 119 proposals, 93 of which addressed the market efficiency issues, with the remaining submissions addressing reliability issues identified by PJM. A total of 14 projects were approved by the PJM Board for this window, 13 of which were market efficiency projects and one of which was for reliability.

The second market efficiency cycle was performed during the 2016/2017 RTEP long term window. That analysis evaluated the historical sources of congestion on a total of four flowgates, all four of which could be addressed by market efficiency projects. The proposal window was open from November 1, 2016, through February 28, 2017. PJM received 96 proposals, all 96 of which addressed market efficiency issues. A total of four projects were approved by the PJM Board for this window, all four of which were market efficiency projects.

The third market efficiency cycle is currently being prepared for the 2018/2019 RTEP long term window. The proposal window was open between November 1, 2018 and February 28, 2019. PJM received 22 proposals for one identified source of congestion.

In 2018, the PJM Board of Managers received correspondence from several officials, representing regions in Pennsylvania and Maryland, requesting an updated benefit/cost evaluation and the cancellation of the previously

approved Transource AP-South market efficiency project.^{43 44 45 46} Approved market efficiency projects periodically undergo a reevaluation process to ensure that the benefit/cost ratio continues to meet the 1.25:1 threshold. The Transource AP-South project was reevaluated in September 2017, February 2018 and again in September 2018. The project exceeded the 1.25:1 threshold in all reevaluations. PJM also concluded that there would be significant reliability violations with the project removed from the model.⁴⁷

The Benefit/Cost Evaluation

For an RTEP project to be recommended to the PJM Board of Managers for approval as a market efficiency project, the relative benefits and costs of the economic based enhancement or expansion must meet a benefit/cost ratio threshold of at least 1.25:1.

The total benefit of a project is calculated as the sum of the net present value of calculated energy market benefits and calculated reliability pricing model (RPM) benefits for a 15 year period, starting with the projected in service date of the project. Benefits are reductions in estimated load charges and production costs in the energy market and reductions in estimated load capacity payments and in system capacity costs in the capacity market. The method for calculating energy market benefits and reliability pricing model benefits used to measure the benefit of an RTEP project for purposes of the 1.25:1 benefit/cost ratio threshold depends on whether the project is regional or subregional. A regional project is any project rated at or above 230 kV. A subregional project is any project rated at less than 230 kv.

The energy market benefit analysis uses an energy market simulation tool that produces an hourly least-cost, security constrained market solution,

⁴² Historical congestion drivers are identified using the historical congestion tables presented in the 2018 State of the Market Report for PJM, Volume 2, Section 11: Congestion and Marginal Losses, historical analysis of real-time constraints, the NERC Book of Flowgates and PROMOD simulations.

⁴⁴ See Letter from State Representative Kristin Phillips Hill, 93rd District, Pennsylvania House of Representatives (September 6, 2018) https://www.pjm.com/-/media/about-pjm/who-we-are/public-disclosures/20180906-pa-rep-phillips-hill-letter-re-transource-llc.ashx?la=en>.

⁴⁵ See Letter from State Representative Stanley E. Saylor, 94th District, Pennsylvania House of Representatives (August 1, 2018) ">https://www.pim.com/-/media/about-pim/who-we-are/public-disclosures/20180907-pa-rep-saylor-letter-re-transource-llc.ashx?la=en>

⁴⁶ See Letter from Paula M. Carmody, People Counsel, State of Maryland Office of People's Counsel (September 6, 2018) https://www.pim.com/-/media/about-pim/who-we-are/public-disclosures/20180907-opc-letter-to-pim-board-re-sept-2018-transource-retool. ashx?a=en>.

⁴⁷ See PJM. "Transource AP-South (2014/15_9A) Project Reevaluation," ">https://www.pjm.com/-/media/committees-groups/committees/teac/20180913/20180913-ap-south-9a-project-reevaluation-sept-2018.ashx>">https://www.pjm.com/-/media/committees-groups/committees/teac/20180913/20180913-ap-south-9a-project-reevaluation">https://www.pjm.com/-/media/committees-groups/committees/teac/20180913/20180913-ap-south-9a-project-reevaluation-sept-2018.ashx>">https://www.pjm.com/-/media/committees/groups/committees/teac/20180913/20180913-ap-south-9a-project-reevaluation-sept-2018.ashx>">https://www.pjm.com/-/media/committees/groups/groups/groups/committees/groups/committees/gro

including total operational costs, hourly LMPs, bus specific injections and bus specific withdrawals for each modeled year with and without the proposed RTEP project. Using the output from the model, PJM calculates changes in energy production costs and load energy payments. Energy production costs are the sum of generation payments in the energy market simulation in each modeled year. The change in the energy production costs in each modeled year is calculated on a system wide basis using the modeled changes in LMPs, changes in load energy payments are calculated on a zonal basis and are netted against corresponding changes in the estimated value of any Auction Revenue Rights (ARR) that sink in that zone. Estimated ARR credits are calculated for each simulated year using the most recent planning year's actual ARR MW combined with FTR prices assumed to be equal to the market simulation's CLMP differences between ARR source and sink points. The value of the ARR rights with and without the RTEP project is evaluated based on changes in modeled CLMPs on the latest, historic allocation of ARR rights. ARR MW allocations are not adjusted to reflect any potential changes in ARR allocations which may be allowed by the RTEP upgrade.

The Reliability Pricing Model (RPM) Benefit analysis is conducted using the RPM solution software, with and without the proposed RTEP project, using a set of estimated capacity offers.

The definition of the benefit in the RPM benefit analysis depends on whether the project is regional or subregional. For a regional project, the RPM benefit for each modeled year is equal to 50 percent of the change in system wide total system capacity cost with and without the project plus 50 percent of the change in zonal load capacity payments with and without the project, including only those zones where the project reduced the load capacity payments. For subregional projects, the reliability pricing model benefits for each modeled year is equal to the change in zonal load capacity payments with and without the project, including only those zones where the project reduced the load capacity payments.

The difference in the benefits calculation used in the regional and subregional cost benefit threshold tests are related to how costs are allocated for approved

regional and subregional projects. The costs of an approved regional project are allocated so that 50 percent of the total costs are allocated on a system wide load ratio share basis and the remaining 50 percent of the total costs are allocated to zones with projected energy market benefits and reliability pricing model benefits in proportion to those projected positive benefits. The costs of an approved subregional project are allocated so that the total costs of the project is allocated to zones with projected energy market benefits and reliability pricing model benefits in proportion to those projected positive benefits.

The current rules governing benefit/cost analysis of competing transmission projects do not correctly measure the relative costs and benefits of transmission projects. The current rules explicitly ignore the increased congestion costs that an RTEP project may create in some zones when calculating the energy market benefits. The current rules do not account for the risk associated with the fact that the project costs are nonbinding estimates. All costs should be included in all zones and LDAs. The current rules regarding cost allocation for regional project do not result in the beneficiary paying all of the costs of the project. The current rules do not account for the risk associated with the fact that the benefits of projects are uncertain and highly sensitive to the modeling assumptions used. The definition of benefits should also be reevaluated.

PJM MISO Interregional Targeted Market Efficiency Process (TMEP)

PJM and MISO developed a process to facilitate the construction of interregional projects in response to the Commissions concerns about interregional coordination along the PJM-MISO seam, called the Targeted Market Efficiency Process (TMEP).⁴⁸

The allocation of costs to each RTO for TMEPs will be in proportion to the benefits received.⁴⁹

⁴⁸ See PJM Interconnection, L.L.C, Docket No. ER17-718-000 (December 30, 2016). 49 See PJM Interconnection, L.L.C, Docket No. ER17-729-000 (December 30, 2016).

On November 2, 2017, PJM submitted a compliance filing including additional revisions the MISO-PJM JOA to include stakeholder feedback in the TMEP project selection process.^{50 51}

The first TMEP analysis occurred in 2017 and included the investigation of congestion on 50 market to market flowgates. The study resulted in the evaluation of 13 potential upgrades, resulting in the recommendation of five TMEP projects. The five projects address \$59.0 million in historical congestion, with a TMEP benefit of \$99.6 million. The projects have a total cost of \$20.0 million, with a 5.0 average benefit/cost ratio. PJM and MISO presented the five recommended projects to their boards in December, 2017, and both boards approved all five projects.⁵²

The 2018 TMEP analysis included the investigation of congestion on 61 market to market flowgates. The study resulted in the evaluation of 19 potential upgrades, resulting in the recommendation of two TMEP projects. The two projects address \$25.0 million in historical congestion, with a TMEP benefit of \$31.9 million. The projects have a total cost of \$4.5 million, with a 7.1 average benefit/cost ratio. PJM and MISO presented the two recommended projects to their boards in December, 2018, and both boards approved the projects.⁵³

Supplemental Transmission Projects

Supplemental projects are asserted to be "transmission expansions or enhancements that are not required for compliance with PJM criteria and are not state public policy projects according to the PJM Operating Agreement. These projects are used as inputs to RTEP models, but are not required for reliability, economic efficiency or operational performance criteria, as determined by PJM."⁵⁴ Supplemental projects are selected solely by the transmission owner and no PJM approval is needed. Supplemental projects are currently exempt from the Order No. 1000 competitive process. Transmission owners have a clear incentive to increase investments in rate base given that transmission owners are paid for these projects on a cost of service basis.

Figure 12-3 shows the latest cost estimate of all baseline and supplemental projects by expected in service year. FERC Order 890 was issued on February 16, 2007, and implemented in PJM starting in 2008. Order 890 required Transmission Providers to participate in a coordinated, open and transparent planning process. Prior to the implementation of Order 890, there were transmission projects planned by transmission owners and included in the PJM planning models, that were not included in the totals shown in Figure 12-3, Table 12-40 and Table 12-41. There has been a significant increase in supplemental projects coincident with the coordinated, open and transparent planning process introduced by the implementation of Order 890 starting in 2008 and the competitive planning process introduced by the implementation of FERC Order No. 1000 starting in 2011.

Figure 12-3 Latest cost estimate of baseline and supplemental projects by expected in service year: 1998 through 2020

⁵⁰ See PIM Interconnection, LLC, Docket No. ER17-718-000, ER17-721-000 and ER17-729-000 (Not Consolidated) (November 2, 2017). 51 161 FERC ¶ 61,005.

⁵² See PJM. "MISO PJM IPSAC," (January 12, 2018) http://www.pjm.com/-/media/committees-groups/stakeholder-meetings/ ipsac/20180112/20180112-ipsac-presentation.ashx>.

⁵³ See PJM. "MISO PJM IPSAC," (January 18, 2019) https://www.pjm.com/-/media/committees-groups/stakeholder-meetings/ ipsac/20190118/20190118-ipsac-presentation.ashx>.

⁵⁴ See PJM. Planning. "Transmission Construction Status," (Accessed on June 30, 2019) http://www.pjm.com/planning/rtep-upgrades-status/construct-status.aspx.

Table 12-40 shows the number of supplemental projects by expected in service year for each transmission zone. The average number of supplemental projects in each expected in service year increased by 615.0 percent, from 20 for years 1998 through 2007 (pre Order 890) to 143 for years 2008 through 2019 (post Order 890).

Year	AECO	AEP	APS	ATSI	BGE	ComEd	DAY	DEOK	DLCO	Dominion	DPL	EKPC	JCPL	Met-Ed	OVEC	PECO	PENELEC	Рерсо	PPL	PSEG	RECO	Total
1998	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	3
1999	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	2
2000	0	0	0	0	0	0	0	0	0	0	11	0	0	0	0	0	0	0	0	0	0	11
2001	0	0	0	0	0	0	0	0	0	0	14	0	0	0	0	0	0	0	0	0	0	14
2002	0	0	0	0	0	0	0	0	0	0	10	0	0	0	0	0	0	0	0	0	0	10
2003	3	0	0	0	0	0	0	0	0	0	10	0	0	0	0	0	2	0	0	0	0	15
2004	5	0	10	0	0	9	0	0	0	0	12	0	2	0	0	0	0	0	0	2	0	40
2005	4	2	8	0	0	4	0	0	0	1	14	0	1	0	0	1	2	0	0	2	0	39
2006	4	2	5	0	0	6	0	0	0	0	9	0	1	0	0	0	1	0	2	1	0	31
2007	1	1	5	0	4	5	0	0	4	0	6	0	0	0	0	0	2	0	1	6	0	35
2008	3	0	15	0	1	6	0	0	1	7	3	0	0	1	0	0	0	0	3	1	0	41
2009	3	1	6	0	1	8	0	0	3	3	5	0	0	0	0	5	1	0	1	2	0	39
2010	0	6	7	0	3	4	0	0	6	3	0	0	1	2	0	2	0	0	3	5	0	42
2011	0	8	8	0	0	2	0	0	5	2	0	0	1	0	0	4	0	0	6	4	0	40
2012	0	5	6	4	1	2	0	7	3	16	1	0	2	0	0	1	0	0	5	11	0	64
2013	5	21	4	5	0	11	0	6	5	13	1	0	1	1	0	1	0	1	14	19	0	108
2014	2	31	2	8	2	14	0	5	6	18	3	2	2	0	0	1	2	0	9	16	0	123
2015	4	15	2	9	1	37	0	8	4	17	5	4	2	0	0	1	0	4	7	24	0	144
2016	5	13	4	17	0	26	0	6	2	13	4	2	0	1	0	3	2	3	11	30	0	142
2017	8	103	3	26	1	23	0	3	8	33	11	5	0	3	0	0	3	1	21	43	0	295
2018	10	130	4	13	1	20	0	15	4	25	6	2	0	0	0	2	0	1	19	28	0	280
2019	4	202	2	34	6	14	2	22	2	17	7	4	0	16	0	1	31	1	15	19	0	399
2020	9	114	0	18	2	6	0	5	1	7	5	4	0	7	0	0	34	0	30	28	0	270
2021	3	67	0	12	0	1	2	0	1	9	3	4	1	2	0	0	4	0	24	27	1	161
2022	4	6	0	1	2	0	3	2	0	1	4	0	0	0	0	0	0	2	18	17	0	60
2023	4	3	0	0	0	1	5	0	3	4	0	0	1	3	0	0	1	0	14	7	0	46
2024	1	0	1	0	7	0	0	0	0	0	2	0	1	0	0	0	0	0	12	0	0	24
2025	6	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	6	0	0	13
2026	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	7	0	0	11
2027	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	3
2028	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2029	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2030	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	9
2031	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2032	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2033	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2034	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2035	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2036	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2037	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2038	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2039	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2040	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0	5
Total	88	730	92	147	37	199	12	79	58	189	151	27	16	36	0	22	85	13	245	292	1	2,519

 Table 12-40 Number of supplemental projects by expected in service year and zone: 1998 through 2040

Table 12-41 shows the latest cost estimate of supplemental projects by expected in service year for each transmission zone. The average latest cost of supplemental projects in each expected in service year increased by 1,745.0 percent, from \$64.5 million for years 1998 through 2007 (pre Order 890) to \$1,190.1 million for years 2008 through 2019 (post Order 890).

Year	AECO	AEP	APS	ATSI	BGE	ComEd	DAY	DEOK	DLCO	Dominion	DPL	EKPC	JCPL	Met-Ed	OVEC	PECO	PENELEC	Рерсо	PPL	PSEG	RECO	Total
1998	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$1.67	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$1.67
1999	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.78	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.78
2000	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$32.95	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$32.95
2001	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$6.79	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$6.79
2002	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$7.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$7.00
2003	\$7.42	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$8.75	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$9.60	\$0.00	\$0.00	\$0.00	\$0.00	\$25.77
2004	\$4.44	\$0.00	\$9.99	\$0.00	\$0.00	\$0.82	\$0.00	\$0.00	\$0.00	\$0.00	\$7.32	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$22.58
2005	\$4.06	\$14.67	\$10.11	\$0.00	\$0.00	\$2.58	\$0.00	\$0.00	\$0.00	\$0.02	\$10.97	\$0.00	\$0.00	\$0.00	\$0.00	\$0.50	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$42.90
2006	\$4.03	\$309.70	\$0.94	\$0.00	\$0.00	\$48.93	\$0.00	\$0.00	\$0.00	\$0.00	\$11.63	\$0.00	\$6.00	\$0.00	\$0.00	\$0.00	\$1.50	\$0.00	\$4.63	\$18.80	\$0.00	\$406.15
2007	\$0.56	\$2.06	\$9.85	\$0.00	\$37.61	\$4.65	\$0.00	\$0.00	\$31.75	\$0.00	\$9.71	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.34	\$2.25	\$0.00	\$98.77
2008	\$2.36	\$0.00	\$12.03	\$0.00	\$0.45	\$7.61	\$0.00	\$0.00	\$7.00	\$14.01	\$2.28	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$1.60	\$0.00	\$0.00	\$47.33
2009	\$0.77	\$0.90	\$12.22	\$0.00	\$5.00	\$21.11	\$0.00	\$0.00	\$19.60	\$2.12	\$7.36	\$0.00	\$0.00	\$0.00	\$0.00	\$48.10	\$2.73	\$0.00	\$0.16	\$17.60	\$0.00	\$137.67
2010	\$0.00	\$34.36	\$12.13	\$0.00	\$18.90	\$1.38	\$0.00	\$0.00	\$34.45	\$14.98	\$0.00	\$0.00	\$0.03	\$4.58	\$0.00	\$31.80	\$0.00	\$0.00	\$1.86	\$17.72	\$0.00	\$172.19
2011	\$0.00	\$37.60	\$9.30	\$0.00	\$0.00	\$1.00	\$0.00	\$0.00	\$16.72	\$85.67	\$0.00	\$0.00	\$1.16	\$0.00	\$0.00	\$113.30	\$0.00	\$0.00	\$11.87	\$34.60	\$0.00	\$311.22
2012	\$0.00	\$46.00	\$5.12	\$0.35	\$2.20	\$12.60	\$0.00	\$26.06	\$11.60	\$165.74	\$0.99	\$0.00	\$6.61	\$0.00	\$0.00	\$12.60	\$0.00	\$0.00	\$19.66	\$223.01	\$0.00	\$532.54
2013	\$3.15	\$134.93	\$1.10	\$33.68	\$0.00	\$59.25	\$0.00	\$9.93	\$81.98	\$25.03	\$0.99	\$0.00	\$0.05	\$4.10	\$0.00	\$22.50	\$0.00	\$2.40	\$76.70	\$503.72	\$0.00	\$959.51
2014	\$8.03	\$387.00	\$5.97	\$58.70	\$21.20	\$60.37	\$0.00	\$2.43	\$14.90	\$88.61	\$5.96	\$0.38	\$5.60	\$0.00	\$0.00	\$13.30	\$1.30	\$0.00	\$33.47	\$309.70	\$0.00	\$1,016.92
2015	\$3.73	\$237.45	\$3.80	\$21.90	\$2.00	\$376.00	\$0.00	\$14.12	\$4.53	\$113.53	\$13.06	\$1.56	\$0.30	\$0.00	\$0.00	\$33.80	\$0.00	\$42.50	\$50.17	\$743.91	\$0.00	\$1,662.36
2016	\$73.54	\$79.98	\$18.40	\$182.70	\$0.00	\$308.15	\$0.00	\$15.13	\$26.95	\$40.68	\$26.60	\$0.25	\$0.00	\$2.37	\$0.00	\$86.40	\$0.40	\$7.80	\$58.76	\$744.18	\$0.00	\$1,672.29
2017	\$66.28	\$642.74	\$8.60	\$142.05	\$0.09	\$145.97	\$0.00	\$65.01	\$3.62	\$105.45	\$92.29	\$2.21	\$0.00	\$14.70	\$0.00	\$0.00	\$8.30	\$12.00	\$261.74	\$988.92	\$0.00	\$2,559.97
2018	\$66.55	\$707.72	\$14.80	\$64.52	\$4.08	\$80.94	\$0.00	\$75.29	\$4.98	\$169.64	\$68.94	\$1.72	\$0.00	\$0.00	\$0.00	\$47.60	\$0.00	\$156.00	\$186.64	\$635.70	\$0.00	\$2,285.12
2019	\$48.50	\$1,361.96	\$4.73	\$231.47	\$71.01	\$93.19	\$7.81	\$127.73	\$5.30	\$46.08	\$40.40	\$16.69	\$0.00	\$12.80	\$0.00	\$2.00	\$99.20	\$70.00	\$257.30	\$428.34	\$0.00	\$2,924.51
2020	\$91.82	\$1,053.02	\$0.00	\$157.80	\$62.50	\$110.10	\$0.00	\$45.30	\$18.10	\$29.68	\$36.02	\$22.55	\$0.00	\$46.60	\$0.00	\$0.00	\$180.30	\$0.00	\$456.17	\$1,947.53	\$0.00	\$4,257.49
2021	\$24.26	\$1,010.03	\$0.00	\$299.70	\$0.00	\$1.00	\$14.00	\$0.00	\$26.20	\$69.12	\$34.01	\$21.21	\$16.00	\$40.10	\$0.00	\$0.00	\$5.30	\$0.00	\$310.93	\$988.77	\$17.00	\$2,877.63
2022	\$81.90	\$50.20	\$0.00	\$27.90	\$263.00	\$0.00	\$10.25	\$21.42	\$0.00	\$0.93	\$35.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$527.00	\$393.10	\$951.47	\$0.00	\$2,362.17
2023	\$45.04	\$52.60	\$0.00	\$0.00	\$0.00	\$1.00	\$32.85	\$0.00	\$135.40	\$38.30	\$0.00	\$0.00	\$8.50	\$16.30	\$0.00	\$0.00	\$200.00	\$0.00	\$179.60	\$177.00	\$0.00	\$886.59
2024	\$11.40	\$0.00	\$3.60	\$0.00	\$223.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$29.72	\$0.00	\$22.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$254.33	\$0.00	\$0.00	\$544.05
2025	\$82.99	\$0.00	\$0.00	\$0.00	\$7.50	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$150.80	\$0.00	\$0.00	\$241.29
2026	\$0.00	\$0.00	\$0.00	\$0.00	\$45.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$131.05	\$0.00	\$0.00	\$176.05
2027	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$54.30	\$0.00	\$0.00	\$54.30
2028	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
2029	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
2030	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$220.49	\$0.00	\$0.00	\$220.49
2031	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
2032	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
2033	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
2034	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
2035	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
2036	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
2037	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
2038	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
2039	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
2040	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$13.03	\$0.00	\$0.00	\$13.03
Total	\$630.83	\$6,162.92	\$142.69	\$1,220.77	\$763.54	\$1,336.64	\$64.91	\$402.42	\$443.08	\$1,009.59	\$491.16	\$66.57	\$66.25	\$141.55	\$0.00	\$411.90	\$508.63	\$817.70	\$3,128.69	\$8,733.22	\$17.00	\$26,560.06

 Table 12-41 Latest cost estimate by expected in service year and zone (\$ millions): 1998 through 2040

The role of supplemental projects in the market efficiency process needs to be modified. It is not clear how a supplemental project can be a market efficiency project that has been identified as a PJM issue based on a cost/ benefit analysis and why such a project should not be subject to competition. The MMU recommends, to increase the role of competition, that the exemption of supplemental from the Order No. 1000 competitive process be terminated.

End of Life Transmission Projects

An end of life transmission project is a project submitted for the purpose of replacing existing infrastructure that has, or is approaching, the end of its useful life.⁵⁵ End of life transmission projects fall under the Transmission Owner Form 715 Planning Criteria, and are currently exempt from the competitive planning process.⁵⁶ End of life transmission projects are already included in the supplemental projects totals or, if included in the transmission owners' reliability plan, will be included in the baseline project list as a reliability criteria project.

The Commission stated that "the transmission planning reforms that the Commission adopted in Order No. 890 were intended to address concerns regarding undue discrimination in grid expansion."⁵⁷ The Commission has further clarified that even if certain end of life supplemental projects increase transmission capacity they are exempt from the competitive planning process. The Commission stated that "we find that this type of incidental increase in transmission capacity that is a function of advancements in technology of the replaced equipment, and is not reasonably severable from the asset management project or activity, would not render the asset management project to the transmission expansion that is subject to the transmission planning requirements of Order No. 890."⁵⁸ The Commission did not address end of life projects that are not incidental. The MMU recommends, to increase the role of competition, that the exemption of supplemental and end of life projects from the Order No. 1000 competitive process be terminated.

Competitive Planning Process Exclusions

There are several project types that are currently exempt from the competitive planning process. These project types include:

- Immediate Need Exclusion: Due to the immediate need of the violation (3 years or less), the timing required for an RTEP proposal window is considered to be infeasible. As a result, the local Transmission Owner is the Designated Entity.⁵⁹
- Below 200kV: Due to the lower voltage level of the identified violation(s), the driver(s) for this project are currently excluded from the competitive proposal window process. As a result, the local Transmission Owner is the Designated Entity.⁶⁰
- FERC 715 (Transmission Owner (TO) Criteria): Due to the violation need of this project resulting solely from FERC 715 TO Reliability Criteria, the driver(s) for this project are currently excluded from the competitive proposal window process. As a result, the local Transmission Owner is the Designated Entity.⁶¹
- Substation Equipment: Due to identification of the limiting element(s) as substation equipment, the driver(s) for this project are currently excluded from the competitive proposal window process. As a result, the local Transmission Owner is the Designated Entity.⁶²

While the PJM Operating Agreement defines who will be the Designated Entity for projects that are excluded from the competitive planning process, neither the PJM Operating Agreement nor the various commission orders on transmission competition prohibit PJM from permitting competition to provide financing for such projects. The MMU recommends that rules be implemented to permit competition to provide financing for transmission projects. This competition could reduce the cost of capital for transmission projects and significantly reduce total costs to customers. In addition, the criteria for and need for all exclusions from the competitive process should be reviewed. There

⁵⁵ The useful life of a transmission investment typically exceeds its depreciable life.

⁵⁶ See PJM Operating Agreement Schedule 6 § 1.5.8(o).

^{57 164} FERC 4 61,160 at P 31 (Aug. 31, 2018) (Docket Nos. ER18-370 and ED18-12).

^{58 164} FERC 4 61,160 at P 33 (Aug. 31, 2018) (Docket Nos. ER18-370 and ED18-12).

⁵⁹ See PJM Operating Agreement Schedule 6 § 1.5.8(m).

⁶⁰ See PJM Operating Agreement Schedule 6 § 1.5.8(n).

⁶¹ See PJM Operating Agreement Schedule 6 § 1.5.8(o)

⁶² See PJM Operating Agreement Schedule 6 § 1.5.8(p).

does not appear to be any market reason to exclude transmission projects from competition.

Cost Capping

The MMU recommends that rules be implemented to require that project cost caps on new transmission projects be part of the evaluation of competing projects. On May 24, 2018, the PJM Markets and Reliability Committee (MRC) approved a motion that required PJM, with input from the MMU, to develop a comparative framework to evaluate the quality and effectiveness of binding cost containment proposals versus proposals without cost containment provisions. The proposed comparative framework, along with the advice and recommendation of the MMU, will be presented to the PJM Planning Committee for review and comment prior to an MRC vote. The comparative framework will be presented at the December 2019 meeting of the MRC.

Board Authorized Transmission Upgrades

The Transmission Expansion Advisory Committee (TEAC) regularly reviews internal and external proposals to improve transmission reliability throughout PJM. These proposals, which include reliability baseline, network, market efficiency and targeted market efficiency projects, are periodically presented to the PJM Board of Managers for authorization.63

An RTEP project can be approved by the PJM Board if the project ensures compliance with NERC, regional and local transmission owner planning criteria or to address market efficiency congestion relief. These projects are considered Baseline Projects. PJM Board approved RTEP projects that are necessary to allow new generation to interconnect reliably are considered Network Projects.

On February 12, 2019, the PJM Board of Managers authorized an additional \$272.0 million in transmission upgrades and additions. As of June 30, 2019, the PJM Board has approved \$38.5 billion in system enhancements since 1999.

Qualifying Transmission Upgrades (QTU)

A Qualifying Transmission Upgrade (QTU) is: "a proposed enhancement or addition to the transmission system that: (a) will increase the Capacity Emergency Transfer Limit into an LDA by a megawatt quantity certified by the Office of the Interconnection; (b) the Office of the Interconnection has determined will be in service on or before the commencement of the first Delivery Year for which such upgrade is the subject of a Sell Offer in the Base Residual Auction; (c) is the subject of a Facilities Study Agreement executed before the conduct of the Base Residual Auction for such Delivery Year and (d) a New Service Customer is obligated to fund through a rate or charge specific to such facility or upgrade."64 If a QTU that was cleared in a BRA is not completed by the start of the Delivery Year, the submitting party is required to provide replacement capacity. Once a QTU is in service, the upgrade is eligible to continue to offer the approved incremental import capability into future RPM Auctions. As of June 30, 2019, no QTUs have cleared a BRA.

QTU projects are submitted and tracked through the PJM queue.⁶⁵ A total of 51 QTU projects have entered the queue since 2007. Of the 51 submitted QTU projects, 38 projects (74.5 percent) have been withdrawn, six (11.8 percent) are in service and seven (13.7 percent) are currently in active development.

Cost Allocation

In response to complaints against PJM RTEP Baseline Upgrade Filings in 2014 that included cost allocations for \$1.5 billion in baseline transmission enhancements and expansions, on November 24, 2015, FERC issued an order directing investigation of "whether there is a definable category of reliability projects within PJM for which the solution-based DFAX cost allocation method may not be just and reasonable, such as projects addressing reliability violations that are not related to flow on the planned transmission facility, and whether an alternative just and reasonable ex ante cost allocation method could be established for any such category of projects."⁶⁶ FERC convened

⁶⁴ See OATT § 1 (Qualifying Transmission Upgrade).

⁶⁵ See PJM. Planning. "New Services Queue," at <https://www.pjm.com/planning/services-requests/interconnection-queues.aspx>. 66 153 FERC ¶ 61,245 at P 35 (Nov. 24, 2015) (Docket Nos. ER15-2562 and ER15-2563.).

⁶³ Supplemental Projects, including the end of life subset of supplemental projects, do not require PJM Board of Managers authorization.

a technical conference on January 12, 2016, to address the complaints in multiple proceedings and to address these two core issues.⁶⁷

The issues identified in the complaints and at the technical conference include: whether the solutions based allocation method is appropriate for upgrades not related to transmission overload issues; whether the solutions based allocation method correctly identifies all the beneficiaries of the upgrades; whether it is reasonable to allocate a level of costs to a merchant transmission project that could force bankruptcy; and whether the significant shifts in allocation that result from use of the 0.01 distribution factor cutoff are appropriate.

It is clear that the allocation issues are difficult. Nonetheless, the allocation methods affect the efficiency of the markets and the incentives for merchant transmission owners to compete to build new transmission. The use of the arbitrary 0.01 distribution factor cutoff can result in large and inappropriate shifts in cost allocation. If the intent of the use of the 0.01 cutoff is to help eliminate small, arbitrary cost allocations to geographically distant areas, this could be achieved by adding a threshold for a minimum usage impact on the line. The MMU recommends consideration of changing the minimum distribution factor in the allocation from 0.01 to 0.00 and adding a threshold minimum impact on the load on the line based on a complete analysis of the intent of the allocation.

Transmission Facility Outages

Scheduling Transmission Facility Outage Requests

A transmission facility is designated as reportable by PJM if a change in its status can affect a transmission constraint on any Monitored Transmission Facility or could impede free flowing ties within the PJM RTO and/or adjacent areas.⁶⁸ When a reportable transmission facility needs to be taken out of service, the transmission owner is required to submit an outage request as early as possible.⁶⁹ The specific timeline is shown in Table 12-43.⁷⁰

68 If a transmission facility is not modeled in the PJM EMS or the facility is not expected to significantly impact PJM system security or congestion management, it is not reportable. See PJM. "Manual 3: Transmission Operations," Rev. 55 (May 31, 2019).
69 See PJM. "Manual 3: Transmission Operations," Rev. 55 (May 31, 2019). Transmission outages have significant impacts on PJM markets, including impacts on FTR auctions, on congestion, and on expected market outcomes in the day-ahead and real-time markets. The efficient functioning of the markets depends on clear, enforceable rules governing transmission outages.

The outage data for the FTR market are for outages scheduled to occur in the 2017/2018 planning period and the 2018/2019 planning period, regardless of when they were initially submitted.⁷¹ The outage data for the day-ahead market are for outages scheduled to occur from January 2015 through June 2019.

Transmission outages are categorized by duration: greater than 30 calendar days; less than or equal to 30 calendar days; greater than five calendar days; less than or equal to five calendar days.⁷² Table 12-42 shows that 77.0 percent of requested outages were planned for less than or equal to five days and 7.7 percent of requested outages were planned for greater than 30 days in the 2018/2019 planning period. Table 12-42 also shows that 76.1 percent of the requested outages were planned for less than or equal to five days and 7.7 percent of requested outages were planned for less than 30 days in the 2018/2019 planning period. Table 12-42 also shows that 76.1 percent of the requested outages were planned for greater than 30 days in the 2017/2018 planning period.

Table 12-42 Transmission facility outage request summary by plannedduration: 2017/2018 and 2018/2019

	2017/2	018	2018/2019					
Planned Duration								
(Days)	Outage Requests	Percent of Total	Outage Requests	Percent of Total				
<=5	16,159	76.1%	17,003	77.0%				
>5 & <=30	3,460	16.3%	3,376	15.3%				
>30	1,626	7.7%	1,712	7.7%				
Total	21,245	100.0%	22,091	100.0%				

⁶⁷ See Docket Nos. EL15-18-000 (ConEd), EL15-67-000 (Linden), and EL15-95-000 (Artificial Island).

⁷⁰ See PJM. "Manual 3: Transmission Operations," Rev. 55 (May 31, 2013)

⁷¹ The hotline tickets, EMS tripping tickets or test outage tickets were excluded. The analysis includes only the transmission outage tickets submitted by PJM companies which are currently active.
72 Id. at 70.

After receiving a transmission facility outage request from a TO, PJM assigns a received status to the request based on its submission date and outage planned duration. The received status can be On Time or Late, as defined in Table 12-43.⁷³

The purpose of the rules defined in Table 12-43 is to require the TOs to submit transmission facility outages prior to the Financial Transmission Right (FTR) auctions so that market participants have complete information about market conditions on which to base their FTR bids and PJM can accurately model market conditions.⁷⁴

Table 12-43 PJM transmission facility outage request received status definition

Planned Duration		Received
(Calendar Days)	Request Submitted	Status
	Before the first of the month one month prior to the starting month of the	
<=5	outage	On Time
	After or on the first of the month one month prior to the starting month of the	
	outage	Late
	Before the first of the month six months prior to the starting month of the	
> 5 & <=30	outage	On Time
	After or on the first of the month six months prior to the starting month of the	
	outage	Late
	The earlier of 1) February 1, 2) the first of the month six months prior to the	
>30	starting month of the outage	On Time
	After or on the earlier of 1) February 1, 2) the first of the month six months	
	prior to the starting month of the outage	Late

Table 12-44 shows a summary of requests by received status. In the 2018/2019 planning period, 47.3 percent of outage requests received were late. In the 2017/2018 planning period, 49.5 percent of outage requests received were late.

Table 12-44 Transmission facility outage request summary by received status:2017/2018 and 2018/2019

		2017/2	2018		2018/2019								
Planned Duration				Percent				Percent					
(Days)	On Time	Late	Total	Late	On Time	Late	Total	Late					
<=5	8,418	7,741	16,159	47.9%	9,306	7,697	17,003	45.3%					
>5 & <=30	1,713	1,747	3,460	50.5%	1,633	1,743	3,376	51.6%					
>30	607	1,019	1,626	62.7%	700	1,012	1,712	59.1%					
Total	10,738	10,507	21,245	49.5%	11,639	10,452	22,091	47.3%					

Once received, PJM processes outage requests in priority order: emergency transmission outage request; transmission outage request submitted on time; and transmission outage request submitted late. Transmission outage requests that are submitted late may be approved if the outage does not affect the reliability of PJM or cause congestion in the system.⁷⁵

Outages with emergency status will be approved even if submitted late after PJM determines that the outage does not result in Emergency Procedures. PJM cancels or withholds approval of any outage that results in Emergency Procedures.⁷⁶ Table 12-45 is a summary of outage requests by emergency status. Of all outage requests scheduled to occur in the 2018/2019 planning period, 12.5 percent were for emergency outages. Of all outage requests scheduled to occur in the 2017/2018 planning period, 12.3 percent were for emergency outages.

Table 12-45 Transmission facility outage request summary by emergency:2017/2018 and 2018/2019

		2017/20	018			2018/2	019	
Planned Duration		Non					Percent	
(Days)	Emergency	Emergency	Total	Emergency	Emergency	Emergency	Total	Emergency
<=5	2,005	14,154	16,159	12.4%	2,024	14,979	17,003	11.9%
>5 & <=30	370	3,090	3,460	10.7%	469	2,907	3,376	13.9%
>30	231	1,395	1,626	14.2%	262	1,450	1,712	15.3%
Total	2,606	18,639	21,245	12.3%	2,755	19,336	22,091	12.5%

⁷⁵ See PJM. "Manual 3: Transmission Operations," Rev. 55 (May 31, 2019). The following language was removed from Manual 3 Rev. 50: PJM retains the right to deny all jobs submitted after 8 a.m. three days prior to the requested start date unless the request is an emergency job or an exception request (i.e. a generator tripped and the Transmission Owner is taking advantage of a situation that was not available before the unit trip).

⁷⁶ PJM. "Manual 3: Transmission Operations," Rev. 55 (May 31, 2019).

⁷³ See PJM. "Manual 3: Transmission Operations," Rev. 55 (May 31, 2019).

⁷⁴ See "Report of PJM Interconnection, LLC. on Transmission Oversight Procedures," Docket No. EL01-122-000 (November 2, 2001).

PJM will approve all transmission outage requests that are submitted on time and do not jeopardize the reliability of the PJM system. PJM will approve all transmission outage requests that are submitted late and are not expected to cause congestion on the PJM system and do not jeopardize the reliability of the PJM system. Each outage is studied and if it is expected to cause a constraint to exceed a limit, PJM will flag the outage ticket as "congestion expected."⁷⁷

After PJM determines that a late request may cause congestion, PJM informs the transmission owner of solutions available to eliminate the congestion. For example, if a generator planned or maintenance outage request is contributing to the congestion, PJM can request that the generation owner defer the outage. If no solutions are available, PJM may require the transmission owner to reschedule or cancel the outage.

Table 12-46 is a summary of outage requests by congestion status. Of all outage requests submitted to occur in the 2018/2019 planning period, 7.1 percent were expected to cause congestion. Of all the outage requests that were expected to cause congestion, 4.2 percent (66 out of 1,566) were denied by PJM in the 2018/2019 planning period and 21.9 percent (343 out of 1,566) were cancelled (Table 12-48). Of all outage requests submitted to occur in the 2017/2018 planning period, 7.5 percent were expected to cause congestion. Of all the outage requests that were expected to cause congestion, 3.6 percent (58 out of 1,602) were denied by PJM in the 2017/2018 planning period and 19.6 percent (314 out of 1,602) were cancelled (Table 12-48).

			-					
		2017/20	18			2018/20	19	
No Percent No								
Planned Duration	Congestion	Congestion		Congestion	Congestion	Congestion		Congestion
(Days)	Expected	Expected	Total	Expected	Expected	Expected	Total	Expected
<=5	1,094	15,065	16,159	6.8%	1,138	15,865	17,003	6.7%
>5 & <=30	357	3,103	3,460	10.3%	270	3,106	3,376	8.0%
>30	151	1,475	1,626	9.3%	158	1,554	1,712	9.2%
Total	1 602	19 643	21 245	7 50%	1 566	20 525	22.091	7 10/0

Table 12-46 Transmission facility outage request summary by congestion: 2017/2018 and 2018/2019

Table 12-47 shows the outage requests summary by received status, congestion status and emergency status. In the 2018/2019 planning period, 34.9 percent of requests were submitted late and were nonemergency while 1.1 percent of requests (250 out of 22,091) were late, nonemergency, and expected to cause congestion. In the 2017/2018 planning period, 37.3 percent of request were submitted late and were nonemergency while 1.4 percent of requests (297 out of 21,245) were late, nonemergency, and expected to cause congestion.

Table 12-47 Transmission facility outage request summary by received status, emergency and congestion: 2017/2018 and 2018/2019

				-					
			2017/201	8			2018/201	19	
			No				No		
Received		Congestion	Congestion		Percent of	Congestion	Congestion		Percent of
Status		Expected	Expected	Total	Total	Expected	Expected	Total	Total
Late	Emergency	85	2,500	2,585	12.2%	72	2,662	2,734	12.4%
	Non Emergency	297	7,625	7,922	37.3%	250	7,468	7,718	34.9%
On Time	Emergency	3	18	21	0.1%	3	18	21	0.1%
	Non Emergency	1,217	9,500	10,717	50.4%	1,241	10,377	11,618	52.6%
Total		1,602	19,643	21,245	100.0%	1,566	20,525	22,091	100.0%

77 PJM added this definition to Manual 38 in February 2017. PJM. "Manual 38: Operations Planning," Rev. 12 (Feb. 1, 2019).

Once PJM processes an outage request, the outage request is labelled as Submitted, Received, Denied, Approved, Cancelled by Company, PJM Admin Closure, Revised, Active or Complete according to the processed stage of a request.⁷⁸ Table 12-48 shows the detailed process status for outage requests only for the outage requests that are expected to cause congestion. Status Submitted and status Received are in the In Process category and status Cancelled by Company and status PJM Admin Closure are in the Cancelled category in Table 12-48. Table 12-48 shows that of all the outage requests that were expected to cause congestion, 4.2 percent (66 out of 1,566) were denied by PJM in the 2018/2019 planning period, 67.9 percent were complete and 21.9 percent (343 out of 1,566) were cancelled. Of all the outage requests that were expected to cause congestion, 3.6 percent (58 out of 1,602) were denied by PJM in the 2017/2018 planning period, 70.8 percent were complete and 19.6 percent (314 out of 1,602) were cancelled.

Table 12-48 Transmission facility outage requests that might cause congestion status summary: 2017/2018 and 2018/2019

	2017/2018									2018/	2019		
Received				In		Congestion	Percent			In		Congestion	Percent
Status		Cancelled	Complete	Process	Denied	Expected	Complete	Cancelled	Complete	Process	Denied	Expected	Complete
Late	Emergency	11	74	0	0	85	87.1%	7	64	0	0	72	88.9%
	Non Emergency	47	220	9	18	297	74.1%	47	170	11	20	250	68.0%
On Time	Emergency	2	1	0	0	3	33.3%	0	3	0	0	3	100.0%
	Non Emergency	254	840	76	40	1,217	69.0%	289	826	73	46	1,241	66.6%
Total		314	1,135	85	58	1,602	70.8%	343	1,063	84	66	1,566	67.9%

There are clear rules defined for assigning On Time or Late status for submitted outage requests in both the PJM Tariff and PJM Manuals.⁷⁹ However, the On Time or Late status only affects the priority that PJM assigns for processing the outage request. Table 12-48 shows that in the 2017/2018 planning period, 297 nonemergency outage requests were submitted late and expected to cause congestion. The expected impact on congestion is the basis for PJM's treatment of late outage requests. But there is no rule or clear definition of this congestion analysis in the PJM Manuals. The MMU recommends that PJM draft a clear definition of the congestion analysis required for transmission outage requests to include in Manual 3 after appropriate review.

Rescheduling Transmission Facility Outage Requests

A TO can reschedule or cancel an outage after initial submission. Table 12-49 is a summary of all the outage requests planned for the 2017/2018 planning period and the 2018/2019 planning period which were approved and then cancelled or rescheduled by TOs at least once. If an outage request was submitted, approved and subsequently rescheduled at least once, the outage request will be counted as Approved and Cancelled. If an outage request was submitted, approved and subsequently cancelled at least once, the outage request will be counted as Approved and Cancelled. In the 2018/2019 planning period, 32.0 percent of transmission outage requests were approved by PJM and then rescheduled by the TOs, and 12.1 percent of the transmission outages were approved by PJM and then rescheduled by the TOs, and 12.6 percent of the transmission outages were approved by PJM and subsequently cancelled by the TO.

⁷⁸ See PJM Markets & Operations, PJM Tools "Outage Information," < http://www.pjm.com/markets-and-operations/etools/oasis/system-information/outage-info.aspx> (2019).

⁷⁹ PJM Operating Agreement Schedule 1 § 1.9.2.

Table 12-49 Rescheduled and cancelled transmission outage requestsummary: 2017/2018 and 2018/2019

			2017/2018					2018/2019		
			Percent		Percent			Percent		Percent
Planned	Outage	Approved and	Approved and	Approved and	Approved and	Outage	Approved and	Approved and	Approved and	Approved and
Duration (Days)	Requests	Rescheduled	Rescheduled	Cancelled	Cancelled	Requests	Rescheduled	Rescheduled	Cancelled	Cancelled
<=5	16,159	3,657	22.6%	2,385	14.8%	17,003	3,955	23.3%	2,407	14.2%
>5 & <=30	3,460	2,182	63.1%	236	6.8%	3,376	2,033	60.2%	210	6.2%
>30	1,626	1,158	71.2%	66	4.1%	1,712	1,079	63.0%	54	3.2%
Total	21,245	6,997	32.9%	2,687	12.6%	22,091	7,067	32.0%	2,671	12.1%

Long Duration Transmission Facility Outage Requests

PJM rules (Table 12-43) define a transmission outage request as On Time or Late based on the planned outage duration and the time of submission. The rule has stricter submission requirements for transmission outage

If a requested outage is determined to be late and TO reschedules the outage, the outage will be revaluated by PJM again as On Time or Late.

A transmission outage ticket with duration of five days or less with an On Time status can retain its On Time status if the outage is rescheduled within the original scheduled month.⁸⁰ This rule allows a TO to reschedule within the same month with very little notice.

A transmission outage ticket with a duration exceeding five days with an On Time status can retain its On Time status if the outage is rescheduled to a future month, and the revision is submitted by the first of the month prior to the revised month in which the outage will occur.⁸¹ This rescheduling rule is much less strict than the rule that applies to the first submission of outage requests with similar duration. When first submitted, the outage request with a duration exceeding five days needs to be submitted before the first of the month six months prior to the month in which the outage was expected to occur. The rescheduling rule allows TOs to avoid the timing requirements associated with outages exceeding five days.

The MMU recommends that PJM reevaluate all transmission outage tickets as On Time or Late as if they were new requests when an outage is rescheduled and apply the standard rules for late submissions to any such outages. requests planned for longer than 30 days. In order to avoid the stricter submission requirement, some transmission owners divided the duration of outage requests longer than 30 days into shorter segments for the same equipment and submitted one request for each segment. The MMU recommends that PJM not permit transmission owners to divide long duration outages into smaller segments to avoid complying with the requirements for long duration outages.

More than one outage request can be submitted for the same transmission equipment. In order to accurately present the results, Table 12-50 shows equipment outages by the equipment instead of by outage request.

Table 12-50 shows that there were 13,100 transmission equipment planned outages in the 2018/2019 planning period, of which 1,720 were longer than 30 days, and of which 246 or 1.9 percent were scheduled longer than 30 days when the duration of all the outage requests are combined for the same equipment.

⁸⁰ PJM. "Manual 3: Transmission Operations," Rev. 55 (May 31, 2019).

		2017/201	2017/2018 2018/201			
		Count of Equipment				
Planned	Divided into	with Planned	Percent of	with Planned	Percent of	
Duration (Days)	Shorter Periods	Outages	Total	Outages	Total	
> 30	No	1,418	11.2%	1,474	11.3%	
	Yes	242	1.9%	246	1.9%	
<= 30		11,016	86.9%	11,380	86.9%	
Total		12,676	100.0%	13,100	100.0%	

Table 12-50 T	Fransmission	outage si	ummary: 1	2017	2018	and	2018/20	019
---------------	---------------------	-----------	-----------	------	------	-----	---------	-----

Table 12-51 shows the details of long duration (> 30 days) outages when combining the duration of the outage requests for the same equipment. The actual duration of scheduled outages would be longer than 30 days if the duration of the outage requests were appropriately combined for the same equipment. An effective duration was calculated for each piece of equipment by subtracting the start date of the earliest outage request from the end date of the latest outage request of the equipment. In the 2018/2019 planning period, within effective duration greater than a month and shorter than two months, there were 26 outages with a combined duration longer than 30 days.

Table 12-51 Equipment outages: 2017/2018 and 2018/2019

	2017/201	8	2018/2019					
Effective Duration	Count of Equipment	Count of Equipment						
of Outage	with Planned Outages	Percent of Total	with Planned Outages	Percent of Total				
<=31	6	2.5%	3	1.2%				
>31 & <=62	25	10.3%	26	10.6%				
>62 &t <=93	18	7.4%	22	8.9%				
>93	193	79.8%	195	79.3%				
Total	242	100.0%	246	100.0%				

Transmission Facility Outage Analysis for the FTR Market

Transmission facility outages affect the price and quantity outcomes of FTR Auctions. The purpose of the rules governing outage reporting is to ensure that outages are known with enough lead time prior to FTR Auctions so that market participants can understand market conditions and PJM can accurately model market conditions.

There are Long Term, Annual and Monthly Balance of Planning Period auctions in the FTR Market. For each type of auction, PJM includes a set of outages to be modeled.

Annual FTR Market

The Annual FTR Market includes the Annual ARR Allocation and the Annual FTR Auction. When determining transmission outages to be modeled in the simultaneous feasibility test used in the Annual FTR Market, PJM considers all outages with planned duration longer than or equal to two weeks as an initial list. Then PJM may exercise significant discretion in selecting outages to be modeled in the final model. PJM posts the final FTR outage list to the FTR web page usually at least one week before the auction bidding opening day.⁸²

In the 2018/2019 planning period, 239 outage requests were included in the annual FTR market outage list and 21,852 outage requests were not included.⁸³ In the 2017/2018 planning period, 225 outage requests were included in the annual FTR market outage list and 21,020 outage requests were not included. Table 12-52, Table 12-53, Table 12-54 and Table 12-55 show the summary information on the modeled outage requests and Table 12-56 and Table 12-57 show the summary information on outages that were not included in the Annual FTR Market.

Table 12-52 shows that 9.2 percent of the outage requests modeled in the Annual FTR Market for the 2018/2019 planning period had a planned duration of less than two weeks and that 16.7 percent of the outage requests (40 out of 239) modeled in the Annual FTR Market for the planning period were submitted late according to outage submission rules. It also shows that 4.0 percent of the outage requests modeled in the Annual FTR Market for the 2017/2018 planning period had a planned duration of less than two weeks and that 16.9 percent of the outage requests (38 out of 225) modeled in the Annual FTR Market for the planning period were submitted late according to outage submission rules.

⁸² PJM Financial Transmission Rights, "Annual ARR Allocation and FTR Auction Transmission Outage Modeling," ">https://www.pjm.com/-/media/markets-ops/ftr/annual-ftr-auction/2018-2019/2018-2019-annual-outage-modeling.ashx?la=en> (April 5, 2018).

⁸³ PJM's treatment of transmission outages in the FTR models is discussed in: See the 2019 State of the Market Report for PJM: Volume 2, Section 13: FTRs and ARRs: Supply and Demand.

			2018/2					
	Percent							Percent
Planned Duration	On Time	Late	Total	of Total	On Time	Late	Total	of Total
<2 weeks	6	3	9	4.0%	19	3	22	9.2%
>=2 weeks & <2 months	65	12	77	34.2%	65	9	74	31.0%
>=2 months	116	23	139	61.8%	115	28	143	59.8%
Total	187	38	225	100.0%	199	40	239	100.0%

Table 12-52 Annual FTR market modeled transmission facility outage requests by received status: 2017/2018 and 2018/2019

Table 12-53 shows the annual FTR market modeled outage requests summary by emergency status and received status. One of the annual FTR market modeled outages expected to occur in the 2018/2019 planning period was an emergency outage. None of the modeled outages expected to occur in the 2017/2018 planning period were emergency outages.

Table 12-53 Annual FTR market mode	led transmission facility out	age requests by emergency a	and received status: 2017/2018	and 2018/2019
------------------------------------	-------------------------------	-----------------------------	--------------------------------	---------------

			2017/2	2018			2018	/2019	
Received			Non		Percent Non		Non		Percent Non
Status	Planned Duration	Emergency	Emergency	Total	Emergency	Emergency	Emergency	Total	Emergency
On Time	<2 weeks	0	6	6	100.0%	0	19	19	100.0%
	>=2 weeks & <2 months	0	65	65	100.0%	0	65	65	100.0%
	>=2 months	0	116	116	100.0%	0	115	115	100.0%
	Total	0	187	187	100.0%	0	199	199	100.0%
Late	<2 weeks	0	3	3	100.0%	0	3	3	100.0%
	>=2 weeks & <2 months	0	12	12	100.0%	0	9	9	100.0%
	>=2 months	0	23	23	100.0%	1	27	28	96.4%
	Total	0	38	38	100.0%	1	39	40	97.5%

PJM determines expected congestion for both On Time and Late outage requests. A Late outage request may be denied or cancelled if it is expected to cause congestion. Table 12-54 shows a summary of requests by expected congestion and received status. Overall, none of all the annual FTR market modeled outages expected to occur in the 2018/2019 planning period and submitted late were expected to cause congestion. Of all the annual FTR market modeled outages expected to occur in the 2017/2018 planning period and submitted late, 10.5 percent (4 out of 38) were expected to cause congestion.

			2017/20)18			2018/20	19	
			No		Percent		No		Percent
Received		Congestion	Congestion		Congestion	Congestion	Congestion		Congestion
Status	Planned Duration	Expected	Expected	Total	Expected	Expected	Expected	Total	Expected
On Time	<2 weeks	3	3	6	50.0%	10	9	19	52.6%
	>=2 weeks & <2 months	18	47	65	27.7%	17	48	65	26.2%
	>=2 months	37	79	116	31.9%	29	86	115	25.2%
	Total	58	129	187	31.0%	56	143	199	28.1%
Late	<2 weeks	0	3	3	0.0%	0	3	3	0.0%
	>=2 weeks & <2 months	1	11	12	8.3%	0	9	9	0.0%
	>=2 months	3	20	23	13.0%	0	28	28	0.0%
	Total	4	34	38	10.5%	0	40	40	0.0%

Table 12-54 Annual FTR market modeled transmission facility outage requests by congestion and received status: 2017/2018 and 2018/2019

Table 12-55 shows that 25.7 percent of outage requests modeled in the annual FTR market for the 2018/2019 planning period and with a duration of two weeks or longer but shorter than two months were cancelled after the FTR auction was open, compared to 32.5 percent for the 2017/2018 planning period. Table 12-55 also shows that 23.1 percent of outages requests modeled in the Annual FTR Market for the 2018/2019 planning period and with a duration of two months or longer were cancelled, compared to 12.9 percent for the 2017/2018 planning period.

Table 12-55 Annual FTR market modeled transmission facility outage requests by processed status: 2017/2018 and 2018/2019

		2017/	2018	2018/2019		
	Processed	Outage		Outage		
Planned Duration	Status	Requests	Percent	Requests	Percent	
<2 weeks	In Progress	0	0.0%	2	9.1%	
	Denied	0	0.0%	0	0.0%	
	Approved	0	0.0%	1	4.5%	
	Cancelled	3	33.3%	4	18.2%	
	Active	0	0.0%	0	0.0%	
	Completed	6	66.7%	15	68.2%	
	Total	9	100.0%	22	100.0%	
>=2 weeks & <2 months	In Progress	7	9.1%	7	9.5%	
	Denied	1	1.3%	0	0.0%	
	Approved	0	0.0%	0	0.0%	
	Cancelled	25	32.5%	19	25.7%	
	Active	0	0.0%	0	0.0%	
	Completed	44	57.1%	48	64.9%	
	Total	77	100.0%	74	100.0%	
>=2 months	In Progress	26	18.7%	20	14.0%	
	Denied	0	0.0%	1	0.7%	
	Approved	2	1.4%	1	0.7%	
	Cancelled	18	12.9%	33	23.1%	
	Active	2	1.4%	11	7.7%	
	Completed	91	65.5%	77	53.8%	
	Total	139	100.0%	143	100.0%	

More outage requests were not modeled in the Annual FTR Market than were modeled in the Annual FTR Market. In the 2018/2019 planning period, 239 outage requests were modeled and 21,852 outage requests were not modeled in the Annual FTR Market. In the 2017/2018 planning period, 225 outage requests were modeled and 21,020 outage requests were not modeled in the Annual FTR Market.

Table 12-56 shows that 13.5 percent of outage requests not modeled in the Annual FTR Auction with duration longer than or equal to two months, labelled On Time according to the rules, were submitted after the Annual FTR Auction bidding opening date for the 2018/2019 planning period compared to 21.4 percent in the 2017/2018 planning period.

Table 12-56 Transmission facility outage requests not modeled in Annual FTR Auction: 2017/2018 and 2018/2019

	2017/2018					2018/2019						
		On Time			Late			On Time			Late	
	Before	After		Before	After		Before	After		Before	After	
	Bidding	Bidding		Bidding	Bidding		Bidding	Bidding		Bidding	Bidding	
	Opening	Opening	Percent	Opening	Opening	Percent	Opening	Opening	Percent	Opening	Opening	Percent
Planned Duration	Date	Date	After	Date	Date	After	Date	Date	After	Date	Date	After
<2 weeks	1,350	8,020	85.6%	216	8,546	97.5%	1,717	8,457	83.1%	204	8,571	97.7%
>=2 weeks & <2 months	582	412	41.4%	122	1,020	89.3%	647	367	36.2%	156	914	85.4%
>=2 months	147	40	21.4%	195	370	65.5%	218	34	13.5%	200	367	64.7%
Total	2,079	8,472	80.3%	533	9,936	94.9%	2,582	8,858	77.4%	560	9,852	94.6%

Table 12-57 Late transmission facility outage requests not modeled in Annual FTR Auction and submitted after annual bidding opening date: 2017/2018 and 2018/2019

		2017/2018			2018/2019	
	Completed		Percent	Completed		Percent
Planned Duration	Outages	Total	Complete	Outages	Total	Complete
<2 weeks	7,111	8,546	83.2%	7,087	8,571	82.7%
>=2 weeks & <2 months	897	1,020	87.9%	790	914	86.4%
>=2 months	318	370	85.9%	254	367	69.2%
Total	8,326	9,936	83.8%	8,131	9,852	82.5%

Although the definition of late outages was developed in order to prevent outages for the planning period being submitted after the opening of bidding in the Annual FTR Auction, the rules have not functioned effectively because the rule has no direct connection to the date on which bidding opens for the

> Annual FTR Auction. By requiring all longduration transmission outages to be submitted before February 1, PJM outage submission rules only prevent long-duration transmission outages from being submitted late. The rule does not address the situation in which longduration transmission outages are submitted on time, but are rescheduled so that they are late. There is no rule to address the situation in which short-duration outages (duration <=

Table 12-57 shows that 69.2 percent of late outage requests which were not modeled in the Annual FTR Auction with duration longer than or equal to two months and submitted after the Annual FTR Auction bidding opening date were approved and completed in the 2018/2019 planning period. It also shows that 85.9 percent of late outage requests which were not modeled in the Annual FTR Auction with duration longer than or equal to two months and submitted after the Annual FTR Auction bidding opening date were approved and completed in the 2017/2018 planning period.

5 days) are submitted on time, but are changed to long-duration transmission outages after the outages are approved and active. The Annual FTR Auction model may consider transmission outages planned for longer than two weeks but less than two months. Those outages not only include long duration outages but also include outages shorter than 30 days. In those cases, PJM outage submission rules failed to prevent long duration transmission outages from being submitted late. The MMU recommends that PJM modify the rules to eliminate the approval of outage requests submitted or rescheduled after the opening of bidding in the Annual FTR Auction.

Monthly FTR Market

When determining transmission outages to be modeled in the Monthly Balance of Planning Period FTR Auction, PJM considers all outages with planned duration longer than five days and may consider outages with planned durations less than or equal to five days. PJM exercises significant discretion in selecting outages to be modeled. PJM posts an FTR outage list to the FTR webpage usually at least one week before the auction bidding opening day.⁸⁴ Table 12-58 and Table 12-59 show the summary information on outage requests modeled in the Monthly Balance of Planning Period FTR Auction and Table 12-60 and Table 12-61 show the summary information on outage requests not modeled in the Monthly Balance of Planning Period FTR Auction.

Table 12-58 shows that on average, 29.8 percent of the outage requests modeled in the Monthly Balance of Planning Period FTR Auction were submitted late according to outage submission rules in the 2018/2019 planning period. On average, 33.3 percent of the outage requests modeled in the Monthly Balance of Planning Period FTR Auction were submitted late according to outage submission rules in the 2017/2018 planning period.

Table 12-58 Monthly Balance of Planning Period FTR Auction modeled transmission facility outage requests by received status: 2017/2018 and 2018/2019

	2	017/2018	2018/2019					
				Percent				Percent
Month	On Time	Late	Total	Late	On Time	Late	Total	Late
Jun	134	116	250	46.4%	208	106	314	33.8%
Jul	83	72	155	46.5%	136	71	207	34.3%
Aug	100	73	173	42.2%	137	78	215	36.3%
Sep	394	125	519	24.1%	465	136	601	22.6%
Oct	598	162	760	21.3%	536	191	727	26.3%
Nov	453	177	630	28.1%	391	129	520	24.8%
Dec	330	142	472	30.1%	363	129	492	26.2%
Jan	194	78	272	28.7%	199	90	289	31.1%
Feb	214	125	339	36.9%	213	109	322	33.9%
Mar	391	168	559	30.1%	389	146	535	27.3%
Apr	444	204	648	31.5%	427	159	586	27.1%
May	396	203	599	33.9%	362	181	543	33.3%
Average	311	137	448	33.3%	319	127	446	29.8%

Table 12-59 shows that on average, 19.6 percent of outage requests modeled in the Monthly Balance of Planning Period FTR Auction were cancelled in the 2018/2019 planning period. On average, 19.0 percent of outage requests modeled in the Monthly Balance of Planning Period FTR Auction were cancelled in the 2017/2018 planning period.

⁸⁴ PJM Financial Transmission Rights, "2015/2016 Monthly FTR Auction Transmission Outage Modeling," http://www.pim.com/-/media/markets-ops/ftr/ftr-allocation/monthly-ftr-auctions/2015-2016-monthly-transmission-outages-that-may-cause-infeasibilities. ashx?la=en> (December 9, 2015).

		In								Percent
Planning Year	Month	Process	Denied	Approved	Cancelled	Revised	Active	Complete	Total	Cancelled
2017/2018	Jun	19	5	5	52	0	64	105	250	20.8%
	Jul	11	2	8	25	0	54	55	155	16.1%
	Aug	10	0	1	27	0	64	71	173	15.6%
	Sep	67	8	13	100	3	161	167	519	19.3%
	Oct	77	2	27	142	0	201	311	760	18.7%
	Nov	39	5	10	121	2	177	276	630	19.2%
	Dec	42	4	9	97	0	74	246	472	20.6%
	Jan	29	6	9	59	0	80	89	272	21.7%
	Feb	33	1	3	63	1	108	130	339	18.6%
	Mar	66	5	15	114	3	171	185	559	20.4%
	Apr	55	1	20	115	0	202	255	648	17.7%
	May	20	11	16	108	0	145	299	599	18.0%
	Avg	39	4	11	85	1	125	182	448	19.0%
2018/2019	Jun	22	11	10	57	0	60	154	314	18.2%
	Jul	11	4	6	38	0	60	88	207	18.4%
	Aug	19	3	2	38	1	65	87	215	17.7%
	Sep	77	11	22	143	1	163	184	601	23.8%
	0ct	66	7	19	140	0	196	299	727	19.3%
	Nov	39	2	8	119	1	166	185	520	22.9%
	Dec	42	5	5	112	0	96	232	492	22.8%
	Jan	35	3	11	43	1	100	96	289	14.9%
	Feb	36	1	2	67	1	112	103	322	20.8%
	Mar	48	5	14	103	0	155	210	535	19.3%
	Apr	51	0	13	89	0	170	263	586	15.2%
	May	38	4	8	119	0	137	237	543	21.9%
	Avg	40	5	10	89	0	123	178	446	19.6%

Table 12-59 Monthly Balance of Planning Period FTR Auction modeled transmission facility outage requests by processed status: 2017/2018 and 2018/2019

Table 12-60 shows that on average, 10.6 percent of outage requests not modeled in the Monthly Balance of Planning Period FTR Auction, labeled On Time according to the rules, were submitted after the monthly FTR auction bidding opening dates in the 2018/2019 planning period, compared to 10.6 percent in the 2017/2018 planning period. On average, 68.7 percent of outage requests not modeled in the Monthly Balance of Planning Period FTR Auction, labeled Late according to the rules, were submitted after the Monthly Balance of Planning Period FTR Auction, labeled Late according to the rules, were submitted after the Monthly Balance of Planning Period FTR Auction bidding opening dates in the 2018/2019 planning period, compared to 70.3 percent in the 2017/2018 planning period.

2017/2018							2018/2019					
	On Time Late							On Time		Late		
	Before Bidding	After Bidding		Before Bidding	After Bidding		Before Bidding	After Bidding		Before Bidding	After Bidding	
	Opening Date	Opening Date	Percent After	Opening Date	Opening Date	Percent After	Opening Date	Opening Date	Percent After	Opening Date	Opening Date	Percent After
Jun	642	96	13.0%	310	847	73.2%	757	120	13.7%	389	830	68.1%
Jul	294	48	14.0%	245	608	71.3%	393	64	14.0%	271	643	70.4%
Aug	341	28	7.6%	211	651	75.5%	483	68	12.3%	259	715	73.4%
Sep	859	84	8.9%	256	599	70.1%	819	145	15.0%	283	712	71.6%
Oct	986	89	8.3%	346	867	71.5%	1,232	116	8.6%	329	945	74.2%
Nov	815	83	9.2%	364	792	68.5%	869	77	8.1%	406	860	67.9%
Dec	610	68	10.0%	324	693	68.1%	663	44	6.2%	321	672	67.7%
Jan	565	74	11.6%	286	746	72.3%	554	75	11.9%	369	726	66.3%
Feb	591	51	7.9%	340	700	67.3%	642	100	13.5%	330	738	69.1%
Mar	1,068	219	17.0%	340	802	70.2%	1,092	112	9.3%	380	772	67.0%
Apr	1,203	119	9.0%	446	852	65.6%	1,405	96	6.4%	440	747	62.9%
May	1,203	149	11.0%	463	1,084	70.1%	1,263	111	8.1%	448	850	65.5%
Avg	765	92	10.6%	328	770	70.3%	848	94	10.6%	352	768	68.7%

Table 12-60 Transmission facility outage requests that are not modeled in Monthly Balance of Planning Period FTR Auction: 2017/2018 and 2018/2019

Table 12-61 shows that on average, 68.6 percent of late outage requests which were not modeled in the Monthly Balance of Planning Period FTR Auction, submitted after the Monthly Balance of Planning Period FTR Auction bidding opening dates, were approved and complete in the 2018/2019 planning period, compared to 68.3 percent in the 2017/2018 planning period.

Table 12-61 Late transmission facility outage requests that are not modeled in Monthly Balance of Planning Period FTR Auction and submitted after monthly bidding opening date: 2017/2018 and 2018/2019

		2017/2018			2018/2019	
	Completed		Percent	Completed		Percent
	Outages	Total	Complete	Outages	Total	Complete
Jun	622	847	73.4%	633	830	76.3%
Jul	410	608	67.4%	449	643	69.8%
Aug	473	651	72.7%	506	715	70.8%
Sep	406	599	67.8%	480	712	67.4%
0ct	595	867	68.6%	614	945	65.0%
Nov	490	792	61.9%	570	860	66.3%
Dec	508	693	73.3%	468	672	69.6%
Jan	493	746	66.1%	471	726	64.9%
Feb	457	700	65.3%	470	738	63.7%
Mar	569	802	70.9%	568	772	73.6%
Apr	560	852	65.7%	504	747	67.5%
May	731	1,084	67.4%	586	850	68.9%
Avg	526	770	68.3%	527	768	68.6%

06May2018

Operating day

Transmission Facility Outage Analysis in the Day-Ahead Energy Market

Transmission facility outages also affect the energy market. Just as with the FTR Market, it is critical that outages that affect the operating day are known prior to the submission of offers in the Day-Ahead Energy Market so that market participants can understand market conditions and PJM can accurately model market conditions in the day-ahead market. PJM requires transmission owners to submit changes to outages scheduled for the next two days no later than 09:30 am.⁸⁵

There are three relevant time periods for the analysis of the impact of transmission outages on the energy market: before the day-ahead market is closed; when the day-ahead market save cases are created; and during the operating day. The list of approved or active outage requests before the day-ahead market is closed is available to market participants. The day-ahead market model uses outages included in the day-ahead market save cases as an input. The outages that actually occurred during the operating day are the outages that affect the real-time market. If the three sets of outages are the same, there is no potential impact on markets. For example, if the list of outages before the day-ahead market save cases, the day-ahead market participant would have inconsistent outage information as what day-ahead market model used.

For example for the operating day of May 5, 2018, Figure 12-4 shows that: there were 443 approved or active outages seen by market participants before the day-ahead market was closed; there were 329 outage requests included in the day-ahead market model; there were 315 outage requests included in both sets of outage; there were 128 outage requests approved or active before the day-ahead market was closed but not included as inputs in day-ahead market model; and there were 14 outage requests included in day-ahead market model but not available to market participants prior to the day-ahead market.

Figure 12-4 Illustration of day-ahead market analysis: May 5, 2018

05May2018

1:30pm

04May2018

10:30am

Approved or active outage requests included in DA Market Model Total 443 Total 329 128 315 14

⁸⁵ PJM. "Manual 3: Transmission Operations," Rev. 55 (May 31, 2019).

Figure 12-5 compares the weekly average number of active or approved outages available to market participants prior to the close of the day-ahead market with the outages included as inputs to the day-ahead market by PJM.

Figure 12-6 compares the weekly average number of outages included as inputs to the day-ahead market by PJM with the outages that actually occurred during the operating day.

Figure 12-7 compares the weekly average number of active or approved outages available to market participants prior to the close of the day-ahead market with the outages that actually occurred during the operating day.

Figure 12-5, Figure 12-6, and Figure 12-7 show that on a weekly average basis, the active or approved outages available to day-ahead market participants, the outages included as inputs in the day-ahead market model and the outages that actually occurred in real time are not consistent. The active or approved outages available to day-ahead market participants are more consistent with the outages that actually occurred in real time than with the outages included in the day-ahead market model.

2019 Quarterly State of the Market Report for PJM: January through June