# **Environmental and Renewable Energy Regulations**

Environmental requirements and renewable energy mandates have a significant impact on PJM markets.

The investments required for environmental compliance have resulted in higher offers in the Capacity Market, and in making the investments in some cases when those offers clear, and in the retirement of units in some cases when those offers do not clear.

Environmental requirements and initiatives at both the federal and state levels and state renewable energy mandates and associated incentives have resulted in the construction of substantial amounts of renewable capacity in the PJM footprint, especially wind and solar resources. Renewable energy credit (REC) markets created by state programs, and federal tax credits have significant impacts on PJM wholesale markets. But state renewables programs in PJM are not coordinated with one another, are generally not consistent with the PJM market design or PJM prices, have widely differing objectives, have widely differing implied prices of carbon and are not transparent on pricing and quantities. The effectiveness of state renewables programs would be enhanced if they were coordinated with one another and with PJM markets, and increased transparency.

#### **Overview**

# Federal Environmental Regulation

- MATS. The U.S. Environmental Protection Agency's (EPA) Mercury and Air Toxics Standards rule (MATS) applies the Clean Air Act (CAA) maximum achievable control technology (MACT) requirement to new or modified sources of emissions of mercury and arsenic, acid gas, nickel, selenium and cyanide.1 All coal steam units in PJM are compliant with the state and federal emissions limits established by MATS.
- Air Quality Standards (NO<sub>x</sub> and SO<sub>2</sub> Emissions). The CAA requires each state to attain and maintain compliance with fine particulate matter (PM) and ozone national ambient air quality standards
- 1 National Emission Standards for Hazardous Air Pollutants From Coal and Oil-Fired Electric Utility Steam Generating Units and Standards of Performance for Fossil Fuel Fired Electric Utility, Industrial-Commercial-Institutional, and Small Industrial-Commercial-Institutional Steam Generating Units, EPA Docket No. EPA-HQ-OAR-2009-0234, 77 Fed. Reg. 9304 (Feb. 16, 2012).

- (NAAQS). The CAA also requires that each state prohibit emissions that significantly interfere with the ability of another state to meet NAAQS.2
- NSR. On August 1, 2019, the EPA proposed to reform the New Source Review (NSR) permitting program.3 NSR requires new projects and existing projects receiving major overhauls that significantly increase emissions to obtain permits. Recent EPA proposals would reduce the number of projects that require permits.
- RICE. Stationary reciprocating internal combustion engines (RICE) are electrical generation facilities like diesel engines typically used for backup, emergency or supplemental power. RICE must be tested annually.4 RICE do not have to meet emissions standards if they are emergency stationary RICE. Environmental regulations allow emergency stationary RICE participating in demand response programs to operate for up to 100 hours per calendar year when providing emergency demand response when there is a PJM declared NERC Energy Emergency Alert Level 2 or there are five percent voltage/frequency deviations.

PJM does not prohibit emergency stationary RICE that does not meet emissions standards from participating directly in PJM markets as DR. Some emergency stationary RICE that does not meet emissions standards are now included in DR portfolios. Emergency stationary RICE should be prohibited from participation as DR either when registered individually or as part of a portfolio if it does not meet emissions standards. Emergency RICE with a limit of 100 hours per year cannot comply with the requirements to be a capacity resource and registrations based on RICE individually or in portfolios should not be approved.

• Greenhouse Gas Emissions. On June 19, 2019, the EPA repealed the Clean Power Plan<sup>5</sup> and replaced it with the Affordable Clean Energy (ACE) rule, which establishes guidelines for states to develop plans to address greenhouse gas emissions from existing

CAA § 110(a)(2)(D)(i)(I).

Prevention of Significant Deterioration (PSD) and Nonattainment New Source Review (NNSR): Project Emissions Accounting, EPA Docket No. EPA-HQ-OAR-2018-0048; FRL-9997-95-OAR, 84 Fed. Reg. 39244 (Aug. 9, 2019).

See 40 CFR § 63.6640(f).

Carbon Pollution Emission Guidelines for Existing Stationary Sources: Electric Utility Generating Units, EPA-HQ-OAR-2013-0602, Final Rule mimeo (Aug. 3, 2015) (Clean Power Plan). The Clean Power Plan never took effect because it was subject to a stay issued by the U.S. Supreme Court

- Cooling Water Intakes. An EPA rule implementing Section 316(b) of the Clean Water Act (CWA) requires that cooling water intake structures reflect the best technology available for minimizing adverse environmental impacts.<sup>7</sup>
- Waters of the United States. The EPA has proposed to significantly narrow the scope of the definition of the Water of the United States and the corresponding scope of EPA jurisdiction under the CWA.
- Coal Ash. The EPA administers the Resource Conservation and Recovery Act (RCRA), which governs the disposal of solid and hazardous waste.<sup>8</sup> The EPA has proposed significant changes to the implementing regulations.

## State Environmental Regulation

- Regional Greenhouse Gas Initiative (RGGI). The Regional Greenhouse Gas Initiative (RGGI) is a CO emissions cap and trade agreement among Connecticut. Delaware. Marvland. Maine. Massachusetts, New Hampshire, York, New Rhode Island, and Vermont that applies to power generation facilities. New Jersey is rejoining.9 Virginia and Pennsylvania are preparing to join. 10 11 The auction price in the December 4, 2019, auction for the 2018/2020 compliance period was \$5.61 per ton, or \$6.18 per metric tonne.
- Carbon Price. If the price of carbon were \$50.00 per metric tonne, short run marginal costs would increase by \$24.52 per MWh or 102.0 percent for a new combustion turbine (CT) unit, \$16.71 per MWh or 97.4 percent for a new combined cycle (CC) unit and \$43.15 per MWh or 145.5 percent for a new coal plant (CP) in 2019.

#### State Renewable Portfolio Standards

- RPS. In PJM, nine of 14 jurisdictions have enacted legislation requiring that a defined percentage of retail suppliers' load be served by renewable resources, for which definitions vary. These are typically known as renewable portfolio standards, or RPS. As of December 31, 2019, Delaware, Illinois, Maryland, Michigan, New Jersey, North Carolina, Ohio, Pennsylvania, and Washington, DC had renewable portfolio standards. Virginia and Indiana had voluntary renewable portfolio standards. Kentucky, Tennessee and West Virginia did not have renewable portfolio standards.
- RPS Cost. The cost of complying with RPS, as reported by the states, exceeded \$3.5 billion over the four year period from 2014 through 2017, an average annual RPS compliance cost of \$869.6 million. The compliance cost for 2017, the most recent year with complete data, was \$925.4 million.

#### **Emissions Controls in PJM Markets**

- Regulations. Environmental regulations affect decisions about emission control investments in existing units, investment in new units and decisions to retire units. As a result of environmental regulations and agreements to limit emissions, many PJM units burning fossil fuels have installed emission control technology.
- Emissions Controls. As of December 31, 2019, 94.0 percent of coal steam MW had some type of fluegas desulfurization (FGD) technology to reduce SO<sub>2</sub> emissions, while 99.6 percent of coal steam MW had some type of particulate control, and 94.4 percent of fossil fuel fired capacity in PJM had NO<sub>x</sub> emission control technology. All coal steam units in PJM are compliant with the state and federal emissions limits established by MATS.

#### Renewable Generation

Renewable Generation. Wind and solar generation was 3.3 percent of total generation in PJM in 2019.
RPS Tier I generation was 4.9 percent of total generation in PJM and RPS Tier II generation was 2.1 percent of total generation in PJM in 2019. Only

<sup>6</sup> See Repeal of the Clean Power Plan; Emission Guidelines for Greenhouse Gas Emissions From Existing Electric Utility Generating Units; Revisions to Emission Guidelines Implementing Regulations, EPA Docket No. EPA-HQ-OAR-2017-0355, et al., 84 Fed. Reg. 32520 (July 8, 2019).

<sup>7</sup> See EPA, National Pollutant Discharge Elimination System—Final Regulations to Establish Requirements for Cooling Water Intake Structures at Existing Facilities and Amend Requirements at Phase I Facilities, EPA-HQ-OW-2008-0667, 79 Fed. Reg. 48300 (Aug. 15, 2014).

<sup>8 42</sup> U.S.C. §§ 6901 et seq.

<sup>9</sup> Executive Order 7; see Regional Greenhouse Gas Initiative, State of New Jersey Department of Environmental Protection <a href="http://www.state.nj.us/dep/aqes/rggi.html">http://www.state.nj.us/dep/aqes/rggi.html</a>.

<sup>10</sup> See Regulation for Emissions Trading, 9 VAC 5-140. The Virginia Air Pollution Control Board is developing the regulation and considering public comments.

<sup>11</sup> Executive Order – 2019-07- Commonwealth Leadership in Addressing Climate Change through Electric Sector Emissions Reductions, Tom Wolf, Governor, October 3, 2019, <a href="https://www.governor.pa.gov/newsroom/executive-order-2019-07-commonwealth-leadership-in-addressing-climate-change-through-electric-sector-emissions-reductions/">https://www.governor.pa.gov/newsroom/executive-order-2019-07-commonwealth-leadership-in-addressing-climate-change-through-electric-sector-emissions-reductions/</a>>.

<sup>12</sup> The actual PJM RPS compliance cost exceeds the reported \$3.5 billion since this total does not include a value for Delaware in 2014, and does not include complete data for 2018 or 2019.

Tier I generation is renewable but Tier 1 includes some carbon emitting generation.

#### Recommendations

- The MMU recommends that renewable energy credit markets based on state renewable portfolio standards be brought into PJM markets as they are an increasingly important component of the wholesale energy market. (Priority: Medium. First reported 2010. Status: Not adopted.)
- The MMU recommends that the Commission reconsider its disclaimer of jurisdiction over RECs markets because, given market changes since that decision, it is clear that RECs materially affect jurisdictional rates. (Priority: High. First reported 2018. Status: Not adopted.)
- The MMU recommends that PJM provide a full analysis of the impact of carbon pricing on PJM generating units and carbon pricing revenues to the PJM states in order to permit the states to consider a potential agreement on the development of a multistate framework for carbon pricing and the distribution of carbon revenues. (Priority: High. First reported 2018. Status: Not adopted.)
- The MMU recommends that jurisdictions with a renewable portfolio standard make the price and quantity data on supply and demand more transparent. (Priority: Low. First reported 2018. Status: Not adopted.)
- The MMU recommends that load and generation located at separate nodes be treated as separate resources in order to ensure that load and generation face consistent incentives throughout the markets. (Priority: High. First reported Q2, 2019. Status: Not adopted.)
- The MMU recommends that emergency stationary RICE be prohibited from participation as DR either when registered individually or as part of a portfolio if it does not meet emissions standards because the environmental run hour limitations mean that emergency RICE cannot meet the capacity market requirements to be DR. (Priority: Medium. New recommendation. Status: Not adopted.)

#### Conclusion

Environmental requirements and renewable energy mandates at both the federal and state levels have a significant impact on the cost of energy and capacity in PJM markets. Renewable energy credit (REC) markets are markets related to the production and purchase of wholesale power, but FERC has determined that RECs are not regulated under the Federal Power Act unless the REC is sold as part of a transaction that also includes a wholesale sale of electric energy in a bundled transaction.13 The MMU recommends that the Commission reconsider its disclaimer of jurisdiction over RECs markets because, given market changes since that decision, it is clear that RECs materially affect jurisdictional rates.

RECs clearly affect prices in the PJM wholesale power market. Some resources are not economic except for the ability to purchase or sell RECs. RECs provide out of market payments to qualifying renewable resources, primarily wind and solar. The credits provide an incentive to make negative energy offers and more generally provide an incentive to enter the market, to remain in the market and to operate whenever possible. These subsidies affect the offer behavior and the operational behavior of these resources in PJM markets and in some cases the existence of these resources and thus the market prices and the mix of clearing resources.

RECs markets are, as an economic fact, integrated with PJM markets including energy and capacity markets, but are not formally recognized as part of PJM markets. It would be preferable to have a single, transparent market for RECs operated by the PJM RTO on behalf of the states that would meet the standards and requirements of all states in the PJM footprint including those with no RPS. This would provide better information for market participants about supply and demand and prices and contribute to a more efficient and competitive market and to better price formation. This could also facilitate entry by qualifying renewable resources by reducing the risks associated with lack of transparent market data. The MMU recommends that PJM provide a full analysis of the impact of carbon pricing on PJM generating units

<sup>13</sup> See 139 FERC  $\P$  61,061 at PP 18, 22 (2012) ("[W]e conclude that unbundled REC transactions fall outside of the Commission's jurisdiction under sections 201, 205 and 206 of the FPA. We further conclude that bundled REC transactions fall within the Commission's jurisdiction under sections 201, 205 and 206 of the FPA,... [A]Ithough a transaction may not directly involve the transmission or sale of electric energy, the transaction could still fall under the Commission's jurisdiction because it is 'in connection with' or 'affects' jurisdictional rates or charges.").

and carbon pricing revenues to states in order to permit states to consider the development of a multistate framework: for RECs markets; for potential agreement on carbon pricing including the distribution of carbon revenues; and for coordination with PJM wholesale markets.

REC markets are not consistently or adequately transparent. Data on REC prices, clearing quantities and markets are not publicly available for all PJM states. The provision of more complete data would facilitate competition to provide energy from renewable sources.

The economic logic of RPS programs and the associated REC and SREC prices is not always clear. The price of carbon implied by REC prices ranges from \$5.63 per tonne in Washington, DC to \$19.21 per tonne in New Jersey. The price of carbon implied by SREC prices ranges from \$50.23 per tonne in Pennsylvania to \$806.35 per tonne in Washington, DC. The effective prices for carbon compare to the RGGI clearing price in December 2019 of \$6.18 per tonne and to the social cost of carbon which is estimated in the range of \$50 per tonne. 14 The impact on the cost of generation from a new combined cycle unit of a \$50 per tonne carbon price would be \$16.71 per MWh.15 The impact of an \$800 per tonne carbon price would be \$267.30 per MWh. This wide range of implied carbon prices is not consistent with an efficient, competitive, least cost approach to the reduction of carbon emissions.

In addition, even the explicit environmental goals of RPS programs are not clear. While RPS is frequently considered to target carbon emissions, Tier 1 resources include some carbon emitting generation and Tier 2 resources include additional carbon emitting generation.

PJM markets provide a flexible mechanism for incorporating the costs of environmental controls and meeting environmental requirements in a cost effective manner. Costs for environmental controls are part of offers for capacity resources in the PJM Capacity Market. The costs of emissions credits are included in energy

offers. PJM markets also provide a flexible mechanism that incorporates renewable resources and the impacts of renewable energy credit markets, and ensures that renewable resources have access to a broad market. PJM markets provide efficient price signals that permit valuation of resources with very different characteristics when they provide the same product.

PJM markets could also provide a flexible mechanism to limit carbon output, for example by incorporating a consistent carbon price in unit offers which would be reflected in PJM's economic dispatch. If there is a social decision to limit carbon output, a consistent carbon price would be the most efficient way to implement that decision. The states in PJM could agree, if they decided it was in their interests, with the appropriate information, on a carbon price and on how to allocate the revenues from a carbon price that would make all states better off. A mechanism like RGGI leaves all decision making with the states. The carbon price would not be FERC jurisdictional or subject to PJM decisions. The MMU continues to recommend that PJM provide modeling information to the states adequate to inform such a decision making process. Such modeling information would include the impact on the dispatch of every unit, the impact on energy prices and the carbon pricing revenues that would flow to each state. This would permit states to make critical decisions about carbon pricing. For example, states receiving high levels of revenue could shift revenue to states disproportionately hurt by a carbon price if they believed that all states would be better off as a result. A carbon price would also be an alternative to specific subsidies to individual nuclear power plants and to the current wide range of implied carbon prices embedded in RPS programs and instead provide a market signal to which any resource could respond. The imposition of specific and prescriptive environmental dispatch rules would, in contrast, pose a threat to economic dispatch and efficient markets and create very difficult market power monitoring and mitigation issues. The provision of subsidies to individual units creates a discriminatory regime that is not consistent with competition. The use of inconsistent implied carbon prices by state is also inconsistent with an efficient market and inconsistent with the least cost approach to meeting state environmental goals.

The annual average cost of complying with RPS over the four year period from 2014 through 2017 for the

<sup>14 &</sup>quot;Technical Update of the Social Cost of Carbon for Regulatory Impact Analysis – Under Executive Order 12899," Interagency Working Group on the Social Cost of Greenhouse Gases, United States Government, (Aug. 2016), <a href="https://l9january2017snapshot.epa.gov/sites/production/files/2016-12/documents/sc\_co2\_tsd\_august\_2016.pdf">https://l9january2017snapshot.epa.gov/sites/production/files/2016-12/documents/sc\_co2\_tsd\_august\_2016.pdf</a>.

<sup>15</sup> The cost impact calculation assumes a heat rate of 6.296 MMBtu per MWh and a carbon emissions rate of 0.053070 tonne per MMBtu. The \$800 per tonne carbon price represents the approximate upper end of the carbon prices implied by the 2019 REC and SREC prices in the PJM jurisdictions with RPS. Additional cost impacts are provided in Table 8-18.

nine jurisdictions that had RPS exceeded \$869.6 million, or a total of \$3.5 billion over four years.16 The RPS compliance cost for 2017, the most recent year for which there is complete data, was \$925.4 million. RPS costs are payments by customers to the sellers of qualifying resources. The revenues from carbon pricing flow to the states.

If all the PJM states participated in a regional carbon market, the estimated revenue returned to the states/ customers from selling carbon allowances would be approximately \$2.2 billion per year if the carbon price were \$5.61 per short ton and emissions levels were five percent below 2018 emission levels. If all the PJM states participated in a regional carbon market, the estimated revenue returned to the states/customers from selling carbon allowances would be approximately \$19.9 billion if the carbon price were \$50 per short ton and emission levels were five percent below 2018 levels. If only the current RPS states participated in a regional carbon market, the estimated revenue returned to the states/ customers from selling carbon allowances at \$5.61 per short ton would be about \$1.3 billion. The costs of a carbon price are the impact on energy market prices, net of the revenue returned to states/customers.

# Federal Environmental Regulation

The U.S. Environmental Protection Agency (EPA) administers the Clean Air Act (CAA), the Clean Water Act (CWA) and Resource Conservation and Recovery Act (RCRA), all of which address pollution created by electric power production. The administration of these statutes is relevant to the operation of PJM markets.<sup>17</sup>

The CAA regulates air emissions by providing for the establishment of acceptable levels of emissions of hazardous air pollutants. The EPA issues technology based standards for major sources and area sources of emissions.18 19

The CWA regulates discharges from point sources that affect water quality and temperature.

The Resource Conservation and Recovery Act (RCRA) regulates the disposal of solid and hazardous waste.20

The EPA's actions have affected and will continue to affect the cost to build and operate generating units in PJM, which in turn affects wholesale energy prices and capacity prices.

## CAA: NESHAP/MATS

Section 112 of the CAA requires the EPA to promulgate emissions control standards, known as the National Emission Standards for Hazardous Air Pollutants (NESHAP), from both new and existing area and major sources. On December 21, 2011, the U.S. Environmental Protection Agency (EPA) issued its Mercury and Air Toxics Standards rule (MATS), which applies the CAA maximum achievable control technology (MACT) requirement to new or modified sources of emissions of mercury and arsenic, acid gas, nickel, selenium and cyanide.

On December 27, 2018, the EPA issued a proposed revised Supplemental Cost Finding for the MATS, and the risk and technology review required by the CAA.21 The EPA determined the cost to coal and oil fired power plants of complying with the MATS rule ranged from \$7.4 to \$9.6 billion annually.<sup>22</sup> The EPA determined the quantifiable benefits attributable to regulating hazardous air pollutant (HAP) emissions ranged from \$4 to \$6 million annually.<sup>23</sup> The EPA determined that based on analysis of costs versus benefits it is not "appropriate and necessary" to regulate HAP emissions from power plants under Section 112 of the Clean Air Act. 24 25 The immediate practical effect is limited because the emission standards and other requirements of the 2012 MATS rule remain in place and the list of coal and oil fired power plants regulated under Section 112 of the Act remains in place.26

<sup>16</sup> The actual PJM RPS compliance cost exceeds the reported \$3.5 billion since this total does not include a value for Delaware in 2014 and does not include complete data for 2018 or 2019.

<sup>17</sup> For more details, see the 2018 State of the Market Report for PJM, Vol. II, Appendix I: \*Environmental and Renewable Energy Regulations.

<sup>18 42</sup> U.S.C. § 7401 et seq. (2000).

<sup>19</sup> The EPA defines a "major source" as a stationary source or group of stationary sources that emit or have the potential to emit 10 tons per year or more of a hazardous air pollutant or 25 tons per year or more of a combination of hazardous air pollutants. An "area source" is any stationary source that is not a major source

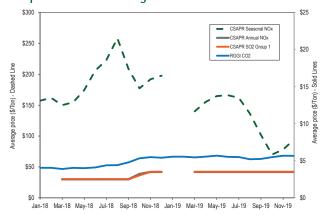
<sup>20 42</sup> U.S.C. §§ 6901 et sea.

<sup>21</sup> See National Emission Standards for Hazardous Air Pollutants: Coal- and Oil-Fired Electric Utility Steam Generating Units-Reconsideration of Supplemental Finding and Residual Risk and Technology Review, Docket No. EPA-HQ-OAR-2018-0794, 84 Fed. Reg. 2670 (Feb. 7, 2019).

<sup>24</sup> Michigan v. EPA, 135 S.Ct. 2699 (2015).

<sup>25 84</sup> Fed. Reg. at 2676-2678

<sup>26</sup> Id. at 2768. EPA explains (id.): "Under D.C. Circuit case law, the EPA's determination that a source category was listed in error does not by itself remove a source category from the CAA section 112(c)(1) list-even EGUs, notwithstanding their special treatment under CAA section 112(n). New Jersey v. EPA, 517 F.3d 574 (D.C. Cir. 2008)


## CAA: NAAQS/CSAPR

The CAA requires each state to attain and maintain compliance with fine particulate matter and ozone national ambient air quality standards (NAAQS). Under NAAQS, the EPA establishes emission standards for six air pollutants, including NO<sub>x</sub>, SO<sub>2</sub>, O<sub>3</sub> at ground level, PM, CO, and Pb, and approves state plans to implement these standards, known as State Implementation Plans (SIPs). In January 2015, the EPA began implementation of the Cross-State Air Pollution Rule (CSAPR) to address the CAA's requirement that each state prohibit emissions that significantly interfere with the ability of another state to meet NAAQS. CSAPR requires specific states in eastern and central United States to reduce power plant emissions of SO<sub>2</sub> and NO<sub>3</sub> that cross state lines and contribute to ozone and fine particle pollution in other states. CSPAR requires reductions to levels consistent with the 1997 ozone and fine particle and 2006 fine particle NAAQS. CSAPR covers 28 states, including all of the PJM states except Delaware, and also excluding the District of Columbia.27

Figure 8-1 shows average, monthly settled prices for  $NO_{\chi}$ ,  $CO_{2}$  and  $SO_{2}$  emissions allowances including CSAPR related allowances for January 1, 2018, through December 31, 2019. Figure 8-1 also shows the average, monthly settled price for the Regional Greenhouse Gas Initiative (RGGI)  $CO_{2}$  allowances.

In 2019, CSAPR annual  $NO_x$  prices were 26.3 percent higher than in 2018. In 2019, CSAPR Seasonal  $NO_x$  prices were 43.9 percent lower than in 2018.

Figure 8-1 Spot monthly average emission price comparison: 2018 through 2019



#### CAA: NSR

Parts C and D of Title I of the CAA provide for New Source Review (NSR) in order to prevent new projects and projects receiving major modifications from increasing emissions in areas currently meeting NAAQS or from inhibiting progress in areas that do not.<sup>28</sup> NSR requires permits before construction commences.

NSR review applies a two part analysis to projects at facilities such as power plants, some of which involve multiple units and combinations of new and existing units. The first part considers whether a modification would cause a "significant emission increase" of a regulated NSR pollutant. The second part considers whether any identified increase is also a "significant net emission increase."

On August 1, 2019, the EPA proposed revisions to the NSR permitting program under which, both emissions increases and decreases from a major modification would be considered in the first part of the NSR applicability test.<sup>29</sup> Under the revised rule the need for a permit and associated investments in pollution controls would be more frequently avoided than under the current rule.

The ACE rule as proposed on August 21, 2018, also included changes to NSR regulations.<sup>30</sup> These proposed NSR changes have been deferred to a separate future action.<sup>31</sup> As proposed, these NSR changes would apply to

<sup>27</sup> Section 126 of the CAA permits a downwind state to file a petition with the EPA to regulate the emissions from particular resources in another state. On October 5, 2018, EPA denied petitions filed under this provision filed by Delaware and Maryland. See Response to Clean Air Act Section 126(b) Petitions From Delaware and Maryland, EPA Docket No. EPA-HQ-OAR-2018-0295, 83 Fed. Reg. 50444 (Oct. 5, 2018). Delaware filed a petition requesting that the EPA regulate emissions from the Brunner Island coal plant in Pennsylvania, the Harrison coal plant in West Virginia, the Homer City coal plant in Pennsylvania and the Conemaugh coal plant in Pennsylvania. Maryland filed a petition requesting that the EPA regulate 36 generating units at coal plants located in Indiana, Kentucky, Ohio, Pennsylvania and West Virginia. U.S. Court of Appeals for the D.C. Circuit Case No. 18-1285.

<sup>28 42</sup> U.S.C § 7470 et seq

<sup>29</sup> Prevention of Significant Deterioration (PSD) and Nonattainment New Source Review (NNSR): Project Emissions Accounting, EPA Docket No. EPA-HQ-QAR-2018-0048; FRL-9997-95-QAR, 84 Fed. Reg. 39244 (Aug. 9, 2019).

<sup>30 82</sup> Fed. Reg. 48035.

<sup>31 84</sup> Fed. Reg. 32520, 32521

new units or existing units receiving major modifications. Under these proposed NSR changes, only modifications that increase a plant's hourly rate of emissions would be deemed major and require a two part NSR analysis. Modifications that increased a plant's annual run time and annual emissions but not the hourly emissions rate would not require an NSR analysis. If accepted, fewer projects would be evaluated under the NSR analysis to determine whether an NSR permit is needed.

#### CAA: RICE

On January 14, 2013, the EPA signed a final rule amending its rules regulating emissions from a wide variety of stationary reciprocating internal combustion engines (RICE). RICE include certain types of electrical generation facilities like diesel engines typically used for backup, emergency or supplemental power, including facilities located behind the meter. These rules include: National Emission Standard for Hazardous Air Pollutants (NESHAP) for Reciprocating Internal Combustion Engines (RICE); New Source Performance Standards (NSPS) of Performance for Stationary Spark Ignition Internal Combustion Engines; and Standards of Performance for Stationary Compression Ignition Internal Combustion Engines (collectively RICE Rules). The RICE Rules apply to emissions such as formaldehyde, acrolein, acetaldehyde, methanol, CO, NO<sub>v</sub>, volatile organic compounds (VOCs) and PM.

EPA regulations require that RICE that do not meet EPA emissions standards (emergency stationary RICE) may operate for only 100 hours per year and only to provide emergency DR during an Energy Emergency Alert 2 (EEA2), or if there are five percent voltage/frequency deviations.<sup>32</sup> Under PJM rules, an EEA2 is automatically triggered when PJM initiates an emergency load response event. Demand resources that rely on RICE to provide load reductions are constrained to a maximum of 100 hours.

PJM does not prohibit emergency stationary RICE that does not meet emissions standards from participating directly in PJM markets as DR. Some emergency stationary RICE that does not meet emissions standards are now included in DR portfolios. Emergency stationary RICE should be prohibited from participation as DR either when registered individually or as part of a portfolio if it does not meet emissions standards. Emergency RICE with a limit of 100 hours per year cannot comply with the requirements to be a capacity resource and registrations based on RICE individually or in portfolios should not be approved.

Under the PJM capacity market rules, every component of a portfolio must be capable of providing capacity. Emergency stationary RICE that does not meet emissions standards fails that test. Allowing RICE to participate as demand response permits noncompliant and inferior resources to participate in the capacity market. There are 785.9 MW of diesel RICE, 86.8 percent of registered diesel generators in demand response, that do not meet EPA emissions standards that are includable in PJM DR portfolios but should not be.

#### CAA: Greenhouse Gas Emissions

The EPA regulates CO<sub>2</sub> as a pollutant using CAA provisions that apply to pollutants not subject to NAAOS.33 34

The U.S. Court of Appeals for the Seventh Circuit has determined that a government agency can reasonably consider the global benefits of carbon emissions reduction against costs imposed in the U.S. by regulations in analyses known as the "Social Costs of Carbon."35 The Court rejected claims raised by petitioners that raised concerns that the Social Cost of Carbon estimates were arbitrary, were not developed through transparent processes, and were based on inputs that were not peer reviewed.36 Although the decision applies only to the Department of Energy's regulations of manufacturers, it bolsters the ability of the EPA and state regulators to rely on Social Cost of Carbon analyses.

Effective October 23, 2015, the EPA placed national limits on the amount of CO2 that new, modified or reconstructed fossil fuel fired steam power plants

<sup>32</sup> Emergency Operations, EOP-011-1, North American Electric Reliability Corporation, <a href="https://www.

<sup>33</sup> See CAA § 111.

<sup>34</sup> On April 2, 2007, the U.S. Supreme Court overruled the EPA's determination that it was not authorized to regulate greenhouse gas emissions under the CAA and remanded the matter to the EPA to determine whether greenhouse gases endanger public health and welfare. Massachusetts v. FPA 549 U.S. 497, On December 7, 2009, the FPA determined that greenhouse gases, including carbon dioxide, methane, nitrous oxide, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride, endanger public health and welfare. See Endangerment and Cause or Contribute Findings for Greenhouse Gases Under Section 202(a) of the Clean Air Act, 74 Fed. Reg. 66496, 66497 (Dec. 15, 2009). In a decision dated June 26, 2012, the U.S. Court of Appeals for the DC Circuit upheld the endangerment finding, rejecting challenges brought by industry groups and a number of states. Coalition for Responsible Regulation, Inc., et al. v. EPA, No 09-1322.

<sup>35</sup> See Zero Zone, Inc., et al., v. U.S. Dept. of Energy, et al., Case Nos. 14-2147, et al., Slip Op. (Aug. 8,

would be allowed to emit based on the best system of emission reductions (BSER) determined by the EPA.<sup>37</sup> On December 12, 2018, the EPA proposed to revise the 2015 GHG NSR Rule by increasing the allowable emissions and eliminating the requirement for carbon capture for new coal units.<sup>38</sup>

On June 19, 2019, the EPA repealed the Clean Power Plan<sup>39</sup> and replaced it with the Affordable Clean Energy (ACE) rule.<sup>40</sup> The ACE rule establishes emission guidelines pursuant to which states must develop plans to address greenhouse gas emissions from existing coal fired power plants.

The ACE Rule allows states to establish standards of performance based on a proposed list of candidate technologies to achieve the BSER standard.<sup>41</sup> As a result, the impact on coal fired generation depends upon actions taken in their host state. Under the ACE Rule states may permit more CO<sub>2</sub> emissions than under the Clean Power Plan.

# CWA: WOTUS Definition and Effluents WOTUS

The Clean Water Act (CWA) applies to the navigable waters, which are defined as waters of the United States (WOTUS).<sup>42</sup> <sup>43</sup>

On October 22, 2019 the EPA issued a final rulemaking to rescind the definition of WOTUS proposed in the 2015 Clean Water Rule. The rule prevents the potential implementation of a broader definition of WOTUS included in the 2015 rule that was never implemented as the result of a stay issued by a reviewing Court.<sup>44</sup> The U.S. Supreme Court reversed the stay, but the EPA

amended the 2015 Clean Water Rule to establish an applicability date of February 6, 2020.<sup>45</sup>

On January 23, 2020, the EPA and the Department of the Army issued a final rule to define WOTUS.<sup>46</sup> The replacement rule narrows the scope of federal jurisdiction and expands the scope of state jurisdiction over waters compared to the current rule and its interpreting precedent. The rule will become effective 60 days after its publication in the Federal Register, which is pending.

The EPA has not applied the definition of WOTUS to coal ash ponds, although the issue was never firmly settled. The 2020 rule formally adopts the current approach.

## Discharges and Intakes

The EPA regulates discharges from and intakes to power plants, including water cooling systems at steam electric power generating stations, under the CWA.<sup>47</sup>

#### RCRA: Coal Ash

The EPA administers the Resource Conservation and Recovery Act (RCRA), which governs the disposal of solid and hazardous waste. 48 Solid waste is regulated under subtitle D. Subtitle D criteria are not directly enforced by the EPA. Subtitle C governs the disposal of hazardous waste. Hazardous waste is subject to direct regulatory control by the EPA from the time it is generated until its ultimate disposal.

In April 2015, the EPA issued a rule under RCRA, the Coal Combustion Residuals rule (2015 CCRR), which sets criteria for the disposal of coal combustion residues (CCRs), or coal ash, produced by electric utilities and independent power producers.<sup>49</sup> CCRs include fly ash (trapped by air filters), bottom ash (scooped out of boilers) and scrubber sludge (filtered using wet limestone scrubbers). These residues are typically stored on site in ponds (surface impoundments) or sent to landfills.

<sup>37</sup> Standards of Performance for Greenhouse Gas Emissions from New Stationary Sources: Electric Utility Generating Units, Proposed Rule, EPA-HQ-OAR-2013-0495, 90 Fed. Reg. 205 (October 23, 2015) ("2015 GHG NSR Rule"); 40 CFR Part 60, subpart TITT.

<sup>38</sup> Review of Standards of Performance for Greenhouse Gas Emissions From New, Modified, and Reconstructed Stationary Sources: Electric Utility Generating Units, EPA-HQ-OAR-2013-0495; FRL-9987-85- OAR, 83 Fed. Reg. 65424, 65427 (Dec. 20, 2018) ("2018 Proposed Rev. GHG NSR").

<sup>39</sup> Carbon Pollution Emission Guidelines for Existing Stationary Sources: Electric Utility Generating Units, EPA-HQ-OAR-2013-0602, Final Rule mimeo (Aug. 3, 2015) (Clean Power Plan). The Clean Power Plan never took effect because it was subject to a stay issued by the U.S. Supreme Court.

<sup>40</sup> See Repeal of the Clean Power Plan; Emission Guidelines for Greenhouse Gas Emissions From Existing Electric Utility Generating Units; Revisions to Emission Guidelines Implementing Regulations, EPA Docket No. EPA-HQ-OAR-2017-0355, et al., 84 Fed. Reg. 32520 (July 8, 2019) ("ACF Rule").

<sup>41</sup> Candidate technologies include: Neural network/intelligent sootblowers, boiler feed pumps, air heater and duct leakage control, variable frequency drives, blade path upgrade (steam turbine), redesign/replace economizer, and improved operating and maintenance practices.

<sup>42 33</sup> U.S.C. 1251 et seq.; 33 U.S.C. § 1362(7) ("The term "navigable waters" means the waters of the United States, including the territorial seas.").

<sup>43</sup> For more details, see the *2019 State of the Market Report for PJM*, Volume II, Appendix I: "Environmental and Renewable Energy Regulations."

<sup>44</sup> The stay was issued by the U.S. Court of Appeals for the Sixth Circuit on October 9, 2015.

<sup>45</sup> See Definition of "Waters of the United States"—Addition of an Applicability Date to 2015 Clean Water Rule, Final Rule, EPA Docket No. EPA-HQ-OW-2017-0644, 83 Fed. Reg. 5200 (Feb. 6, 2018); National Assoc. of Mfg. v Dept. of Defense, No. 16-299 (S. Ct. Jan. 22, 2018).

<sup>46</sup> See The Navigable Waters Protection Rule: Definition of "Waters of the United States," EPA Docket No. EPA-HQ-OW-2018-0149, \_83 Fed. Reg. 67174(December 28, 2018).

<sup>47</sup> For more details, see the 2019 State of the Market Report for PJM, Volume II, Appendix I: "Environmental and Renewable Energy Regulations."

<sup>48 42</sup> U.S.C. §§ 6901 et seq.

<sup>49</sup> See Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals From Electric Utilities, 80 Fed. Reg. 21302 (April 17, 2015).

The U.S. Court of Appeals for the D.C. Circuit invalidated certain provisions of the 2015 CCRR and remanded it to the EPA.50 On November 4, 2019, the EPA proposed revisions to CCRR in compliance with the court orders ("November 4th Proposed Rule").51 The November 4th proposed rule would require (i) unlined surface impoundments (ponds) to cease receiving waste on August 31, 2020, rather than October 31, 2019, as specified in the current rule; (ii) removal of compacted soil lined and clay lined ponds from classification as lined and exempt from CCRR; and would require closure of all unlined ponds regardless of whether leakage is detected.52

For impoundment facilities that fail restrictions on the minimum depth to or interaction with an aquifer, the November 4th proposed rule postpones the earliest required date to cease receipt of waste to August 31, 2020.53

Impoundment facilities unable to meet the earliest deadline would be able to obtain extensions until an alternative can be "technically feasibly implemented."54 Utilities may obtain an automatic extension to November 30, 2020, upon certification of need for additional time.<sup>55</sup> Upon receipt of required documentation, the EPA may grant a longer extension as far as October 15, 2023, on a case by case basis, and to as long as October 17, 2028, for a facility with a surface impoundment of 40 acres or greater that commits to a deadline for ending operations of its boiler.56

# State Environmental Regulation **State Emissions Regulations**

States have in some cases enacted emissions regulations more stringent or potentially more stringent than federal requirements:57

- 50 Utility Solid Waste Activities Group, et al. v. EPA, No. 15-1219 (D.C. Cir. August 21, 2018); Waterkeeper Alliance Inc. et al. v. EPA, No. 18-1289 (D.C. Cir. March 13, 2019)
- 51 See Hazardous and Solid Waste Management System: Disposal of Coal Combustion Residuals From Electric Utilities; A Holistic Approach to Closure Part A: Deadline To Initiate Closure, EPA-HQ-OLEM-2019-0172; FRL-10002- 02-OLEM, 84 Fed. Reg. 65941 (Dec. 2, 2019).
- 52 See Hazardous and Solid Waste Management System: Disposal of Coal Combustion Residuals From Electric Utilities; A Holistic Approach to Closure Part A: Deadline To Initiate Closure, EPA EPA-HQ-OLEM-2019-0172, 84 Fed. Reg. 65941 (December 2, 2019).
- 53 Id. at 65942.
- 54 Id. at 65945.
- 55 Id. at 65942.
- 57 For more details, see the 2019 State of the Market Report for PJM, Volume II, Appendix I: "Environmental and Renewable Energy Regulation:

- New Jersey HEDD. Units that run only during peak demand periods have relatively low annual emissions, and have less reason to make such investments under the EPA transport rules. New Jersey addressed the issue of NO<sub>v</sub> emissions on peak energy demand days with a rule that defines peak energy usage days, referred to as high electric demand days or HEDD, and imposes operational restrictions and emissions control requirements on units responsible for significant NO<sub>x</sub> emissions on such high energy demand days. New Jersey's HEDD rule, which became effective May 19, 2009, applies to HEDD units, which include units that have a NO<sub>v</sub> emissions rate on HEDD equal to or exceeding 0.15 lbs/MMBtu and lack identified emission control technologies.
- Illinois Air Quality Standards (NO<sub>y</sub>, SO<sub>2</sub> and Hg). The State of Illinois has promulgated its own standards for NO<sub>v</sub>, SO<sub>2</sub> and Hg (mercury) known as Multi-Pollutant Standards (MPS) and Combined Pollutants Standards (CPS). MPS and CPS establish standards that are more stringent and take effect earlier than comparable Federal regulations, such as the EPA's MATS.

## State Regulation of Greenhouse Gas **Emissions**

#### **RGGI**

The Regional Greenhouse Gas Initiative (RGGI) is a cooperative effort by Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey (as of January 1, 2020), New York, Rhode Island, and Vermont to cap CO<sub>2</sub> emissions from power generation facilities.58

Delaware and Maryland are the only PJM states that were members of RGGI in 2019. New Jersey, a founding member of RGGI, opted out in 2011 but rejoined RGGI in 2020.59 Other PJM states have expressed interest in joining RGGI. The Virginia Air Pollution Control Board approved a regulation that would allow Virginia to join RGGI on January 1, 2021.60 Pennsylvania Governor Tom Wolf issued an executive order on October 3, 2019,

<sup>58</sup> RGGI provides a link on its website to state statutes and regulations authorizing its activities, which can be accessed at: <a href="http://www.rggi.org/design/re">http://www.rggi.org/design/re</a>

<sup>59 &</sup>quot;Statement on New Jersey Greenhouse Gas Rule," RGGI Inc., (June 17, 2019) <a href="https://www.rggi">https://www.rggi</a> org/news-releases/rggi-releases>.

<sup>60</sup> See 9VAC5-140-6010-6430.

directing the Pennsylvania Department of Environmental Protection (DEP) to develop a proposal to limit carbon emissions from fossil fuel generators that is consistent with RGGI.<sup>61</sup> The order stipulates that the DEP is to present a rulemaking package to the Pennsylvania Environmental Quality Board by July 31, 2020.<sup>62</sup> The order further directs DEP to "engage with PJM Interconnection to promote the integration of this program in a manner that preserves orderly and competitive economic dispatch within PJM and minimizes emissions leakage."

Table 8-1 shows the RGGI CO, auction clearing prices and quantities for the 2008/2011 compliance period auctions, the 2012/2014 compliance period auctions, the 2015/2018 compliance period and the 2018/2020 compliance period auctions held as of December 4, 2019, in short tons and metric tonnes.63 Prices for auctions held December 4, 2019, were \$5.61 per allowance (equal to one short ton of CO<sub>2</sub>), above the current price floor of \$2.21 for RGGI auctions. 64 The RGGI base budget for CO<sub>2</sub> will be reduced by 2.5 percent per year each year from 2015 through 2020. The price increased from the last auction clearing price of \$5.20 in September 2019.

Table 8-1 RGGI CO<sub>2</sub> allowance auction prices and quantities in short tons and metric tonnes: 2009/2011, 2012/2014, 2015/2018, and 2018/2020 Compliance Periods<sup>65</sup>

|                    |          | Short Tons | Metric Tonnes |          |            |            |  |
|--------------------|----------|------------|---------------|----------|------------|------------|--|
|                    | Clearing | Quantity   | Quantity      | Clearing | Quantity   | Quantity   |  |
| Auction Date       | Price    | Offered    | Sold          | Price    | Offered    | Sold       |  |
| September 25, 2008 | \$3.07   | 12,565,387 | 12,565,387    | \$3.38   | 11,399,131 | 11,399,131 |  |
| December 17, 2008  | \$3.38   | 31,505,898 | 31,505,898    | \$3.73   | 28,581,678 | 28,581,678 |  |
| March 18, 2009     | \$3.51   | 31,513,765 | 31,513,765    | \$3.87   | 28,588,815 | 28,588,815 |  |
| June 17, 2009      | \$3.23   | 30,887,620 | 30,887,620    | \$3.56   |            | 28,020,786 |  |
| September 9, 2009  | \$2.19   | 28,408,945 | 28,408,945    | \$2.41   | 25,772,169 | 25,772,169 |  |
| December 2, 2009   | \$2.05   | 28,591,698 | 28,591,698    | \$2.26   | 25,937,960 | 25,937,960 |  |
| March 10, 2010     | \$2.07   | 40,612,408 | 40,612,408    | \$2.28   | 36,842,967 | 36,842,967 |  |
| June 9, 2010       | \$1.88   | 40,685,585 | 40,685,585    | \$2.07   | 36,909,352 | 36,909,352 |  |
| September 10, 2010 | \$1.86   | 45,595,968 | 34,407,000    | \$2.05   | 41,363,978 | 31,213,514 |  |
| December 1, 2010   | \$1.86   | 43,173,648 | 24,755,000    | \$2.05   | 39,166,486 | 22,457,365 |  |
| March 9, 2011      | \$1.89   | 41,995,813 | 41,995,813    | \$2.08   | 38,097,972 | 38,097,972 |  |
| June 8, 2011       | \$1.89   | 42,034,184 | 12,537,000    | \$2.08   | 38,132,781 | 11,373,378 |  |
| September 7, 2011  | \$1.89   | 42,189,685 | 7,487,000     | \$2.08   | 38,273,849 | 6,792,094  |  |
| December 7, 2011   | \$1.89   | 42,983,482 | 27,293,000    | \$2.08   | 38,993,970 | 24,759,800 |  |
| March 14, 2012     | \$1.93   | 34,843,858 | 21,559,000    | \$2.13   | 31,609,825 | 19,558,001 |  |
| June 6, 2012       | \$1.93   | 36,426,008 | 20,941,000    | \$2.13   | 33,045,128 | 18,997,361 |  |
| September 5, 2012  | \$1.93   | 37,949,558 | 24,589,000    | \$2.13   | 34,427,270 | 22,306,772 |  |
| December 5, 2012   | \$1.93   | 37,563,083 | 19,774,000    | \$2.13   | 34,076,665 | 17,938,676 |  |
| March 13, 2013     | \$2.80   | 37,835,405 | 37,835,405    | \$3.09   | 34,323,712 | 34,323,712 |  |
| June 5, 2013       | \$3.21   | 38,782,076 | 38,782,076    | \$3.54   | 35,182,518 | 35,182,518 |  |
| September 4, 2013  | \$2.67   | 38,409,043 | 38,409,043    | \$2.94   | 34,844,108 | 34,844,108 |  |
| December 4, 2013   | \$3.00   | 38,329,378 | 38,329,378    | \$3.31   | 34,771,837 | 34,771,837 |  |
| March 5, 2014      | \$4.00   | 23,491,350 | 23,491,350    | \$4.41   | 21,311,000 | 21,311,000 |  |
| June 4, 2014       | \$5.02   | 18,062,384 | 18,062,384    | \$5.53   | 16,385,924 | 16,385,924 |  |
| September 3, 2014  | \$4.88   | 17,998,687 | 17,998,687    | \$5.38   | 16,328,139 | 16,328,139 |  |
| December 3, 2014   | \$5.21   | 18,198,685 | 18,198,685    | \$5.74   | 16,509,574 | 16,509,574 |  |
| March 11, 2015     | \$5.41   | 15,272,670 | 15,272,670    | \$5.96   | 13,855,137 | 13,855,137 |  |
| June 3, 2015       | \$5.50   | 15,507,571 | 15,507,571    | \$6.06   | 14,068,236 | 14,068,236 |  |
| September 3, 2015  | \$6.02   | 25,374,294 | 25,374,294    | \$6.64   | 23,019,179 | 23,019,179 |  |
| December 2, 2015   | \$7.50   | 15,374,274 | 15,374,274    | \$8.27   | 13,947,311 | 13,947,311 |  |
| March 9, 2016      | \$5.25   | 14,838,732 | 14,838,732    | \$5.79   | 13,461,475 | 13,461,475 |  |
| June 1, 2016       | \$4.53   | 15,089,652 | 15,089,652    | \$4.99   | 13,689,106 | 13,689,106 |  |
| September 7, 2016  | \$4.54   | 14,911,315 | 14,911,315    | \$5.00   | 13,527,321 | 13,527,321 |  |
| December 7, 2016   | \$3.55   | 14,791,315 | 14,791,315    | \$3.91   | 13,418,459 | 13,418,459 |  |
| March 8, 2017      | \$3.00   | 14,371,300 | 14,371,300    | \$3.31   | 13,037,428 | 13,037,428 |  |
| June 7, 2017       | \$2.53   | 14,597,470 | 14,597,470    | \$2.79   | 13,242,606 | 13,242,606 |  |
| September 8, 2017  | \$4.35   | 14,371,585 | 14,371,585    | \$4.80   | 13,037,686 | 13,037,686 |  |
| December 8, 2017   | \$3.80   | 14,687,989 | 14,687,989    | \$4.19   | 13,324,723 | 13,324,723 |  |
| March 14, 2018     | \$3.79   | 13,553,767 | 13,553,767    | \$4.18   | 12,295,774 | 12,295,774 |  |
| June 13, 2018      | \$4.02   | 13,771,025 | 13,771,025    | \$4.43   | 12,492,867 | 12,492,867 |  |
| September 9, 2018  | \$4.50   | 13,590,107 | 13,590,107    | \$4.96   | 12,328,741 | 12,328,741 |  |
| December 5, 2018   | \$5.35   | 13,360,649 | 13,360,649    | \$5.90   | 12,120,580 | 12,120,580 |  |
| March 13, 2019     | \$5.27   | 12,883,436 | 12,883,436    | \$5.81   | 11,687,660 | 11,687,660 |  |
| June 5, 2019       | \$5.62   | 13,221,453 | 13,221,453    | \$6.19   | 11,994,304 | 11,994,304 |  |
| September 4, 2019  | \$5.20   | 13,116,447 | 13,116,447    | \$5.73   | 11,899,044 | 11,899,044 |  |
| December 4, 2019   | \$5.61   | 13,116,444 | 13,116,444    | \$6.18   | 11,899,041 | 11,899,041 |  |

RGGI auctions generated \$284.0 million in auction revenue in 2019 and have generated \$3.4 billion in auction revenue since 2008.<sup>66</sup> RGGI auction revenue is returned to the states and the states decidewhich how to spend their share of the auction revenue. RGGI reported that the RGGI states, cumulative through the 2017 reporting year, have spent approximately 58 percent of the revenue

<sup>61</sup> Executive Order No. 2019-07- Commonwealth Leadership in Addressing Climate Change through Electric Sector Emissions Reductions, Tom Wolf, Governor (Oct. 3, 2019), <a href="https://www.governor.pa.gov/newsroom/executive-order-2019-07-commonwealth-leadership-in-addressing-climate-change-through-electric-sector-emissions-reductions/>.">https://www.governor.pa.gov/newsroom/executive-order-2019-07-commonwealth-leadership-in-addressing-climate-change-through-electric-sector-emissions-reductions/>.</a>

<sup>62</sup> ld.

<sup>63</sup> The September 3, 2015, auction included additional Cost Containment Reserves (CCRs) since the clearing price for allowances was above the CCR trigger price of \$6.00 per ton in 2015. The auctions on March 5, 2014, and September 3, 2015, were the only auctions to use CRRs.

<sup>64</sup> RGGI measures carbon in short tons (short ton equals 2,000 pounds) while world carbon markets measure carbon in metric tonnes (metric tonne equals 1,000 kilograms or 2,204.6 pounds).

<sup>65</sup> See Regional Greenhouse Gas Initiative, "Auction Results," <a href="http://www.rggi.org/market/co2\_auctions/results">http://www.rggi.org/market/co2\_auctions/results</a> (Accessed January 23, 2020).

<sup>66</sup> See Auction Results at <a href="https://www.rggi.org/">https://www.rggi.org/</a>

on energy efficiency, 14 percent on clean and renewable energy, 8 percent on greenhouse gas abatement and 14 percent on direct bill assistance.67

If all PJM states joined RGGI, the total RGGI revenue to the PJM states would be significant. The estimated allowance revenue for PJM states based on 2018 CO<sub>2</sub> emission levels and the RGGI clearing price for the December 2019 auction ranges from \$1.2 billion per year to \$2.2 billion per year depending on associated reductions in carbon emission levels (Table 8-2).68 Table 8-2 shows the estimated carbon allowance revenue for each PJM state based on the latest RGGI auction price and reductions below 2018 CO, emission levels ranging from five to 50 percent. CO, emissions for the PJM states were approximately five times the total CO, emissions for the nine RGGI states.<sup>69</sup> A power plant owner must acquire an allowance for each ton of CO2 emissions and the revenue values in Table 8-2 are computed by multiplying the carbon price by the emission cap level which is expressed as a reduction below the 2018 actual emissions level. States that participate in RGGI choose their emission cap. For example, New Jersey has chosen an emission cap of 18,000,000 short tons for reentry into RGGI in 2020, 5.3 percent below New Jersey's 2018 CO, emissions level; the New Jersey emission cap will be reduced by 540,000 short tons each year through 2030.70

Table 8-2 Estimated CO<sub>2</sub> allowance revenue at December 2019 RGGI price level<sup>71 72 73</sup>

|                  | Estimated CO <sub>2</sub> allowance revenue (\$ millions), carbon price \$5.61 per short ton |                     |                 |                 |                 |                 |                 |  |  |  |
|------------------|----------------------------------------------------------------------------------------------|---------------------|-----------------|-----------------|-----------------|-----------------|-----------------|--|--|--|
|                  |                                                                                              |                     | 10 percent      | 15 percent      | 20 percent      | 25 percent      | 50 percent      |  |  |  |
|                  | 2018 power                                                                                   | 5 percent reduction | reduction below |  |  |  |
|                  | generation CO2                                                                               | below 2018          | 2018 emission   |  |  |  |
| Jurisdiction     | emissions (short tons)                                                                       | emission levels     | levels          | levels          | levels          | levels          | levels          |  |  |  |
| Delaware         | 2,820,304.7                                                                                  | \$15.0              | \$14.2          | \$13.4          | \$12.7          | \$11.9          | \$7.9           |  |  |  |
| Illinois         | 34,918,315.6                                                                                 | \$186.1             | \$176.3         | \$166.5         | \$156.7         | \$146.9         | \$97.9          |  |  |  |
| Indiana          | 49,202,850.2                                                                                 | \$262.2             | \$248.4         | \$234.6         | \$220.8         | \$207.0         | \$138.0         |  |  |  |
| Kentucky         | 29,989,896.2                                                                                 | \$159.8             | \$151.4         | \$143.0         | \$134.6         | \$126.2         | \$84.1          |  |  |  |
| Maryland         | 17,167,736.9                                                                                 | \$91.5              | \$86.7          | \$81.9          | \$77.0          | \$72.2          | \$48.2          |  |  |  |
| Michigan         | 0.0                                                                                          | \$0.0               | \$0.0           | \$0.0           | \$0.0           | \$0.0           | \$0.0           |  |  |  |
| New Jersey       | 15,521,984.9                                                                                 | \$82.7              | \$78.4          | \$74.0          | \$69.7          | \$65.3          | \$43.5          |  |  |  |
| North Carolina   | 302,169.7                                                                                    | \$1.6               | \$1.5           | \$1.4           | \$1.4           | \$1.3           | \$0.8           |  |  |  |
| Ohio             | 88,921,973.3                                                                                 | \$473.9             | \$449.0         | \$424.0         | \$399.1         | \$374.1         | \$249.4         |  |  |  |
| Pennsylvania     | 81,414,231.3                                                                                 | \$433.9             | \$411.1         | \$388.2         | \$365.4         | \$342.6         | \$228.4         |  |  |  |
| Tennessee        | 0.0                                                                                          | \$0.0               | \$0.0           | \$0.0           | \$0.0           | \$0.0           | \$0.0           |  |  |  |
| Virginia         | 34,399,627.4                                                                                 | \$183.3             | \$173.7         | \$164.0         | \$154.4         | \$144.7         | \$96.5          |  |  |  |
| Washington, D.C. | 0.0                                                                                          | \$0.0               | \$0.0           | \$0.0           | \$0.0           | \$0.0           | \$0.0           |  |  |  |
| West Virginia    | 64,849,471.6                                                                                 | \$345.6             | \$327.4         | \$309.2         | \$291.0         | \$272.9         | \$181.9         |  |  |  |
| Total            | 419,508,561.7                                                                                | \$2,235.8           | \$2,118.1       | \$2,000.4       | \$1,882.8       | \$1,765.1       | \$1,176.7       |  |  |  |

The RGGI emissions cap is the sum of CO<sub>2</sub> allowances issued by each state. Table 8-3 shows the RGGI emission cap history. Compliance with the RGGI allowance obligation is evaluated at the end of each three year period which is called the control period. The first control period began in 2009. The 2019 compliance year was the second year of the fourth control period.

In 2014, RGGI began adjusting the emission cap to account for banked allowances from previous control periods.74 At the end of the first control period, 57,449,495 banked allowances were held by market participants.<sup>75</sup> The cap adjustment for banked allowances was spread over a seven year period beginning in 2014 with the RGGI cap being reduced each year by one-seventh of the banked allowances. An additional reduction of 593 allowances per year,

<sup>67</sup> The Investment of RGGI Proceeds in 2017, The Regional Greenhouse Gas Initiative (RGGI), October 2019, <a href="https://www.rggi.org/investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-investments/proceeds-

<sup>68</sup> This assumes that the PJM states would implement their RGGI rules consistent with the current RGGI states where owners of fossil fuel generators are required to purchase emission allowances in a regional centralized auction or purchase allowances in a secondary market.

<sup>69</sup> Based on 2018 CO, emissions data from the EPA Continuous Emission Monitoring System (CEMS).

<sup>70 &</sup>quot;Governor Murphy Announces Adoption of Rules Returning New Jersey to Regional Greenhouse Gas Initiative," State of New Jersey, Governor Phil Murphy Press Release, June 17, 2019 <a href="https://nj.gov/">https://nj.gov/</a> vernor/news/news/562019/approved/20190617a.shtml

<sup>71</sup> The 2018 CO 2 emissions data is from the EPA Continuous Emission Monitoring System (CEMS) from generators located within the PJM footprint.

<sup>72</sup> Power generation companies subject to a RGGI emission cap can offset up to 3.3 percent of their allowance obligation by undertaking certain greenhouse gas emission reduction projects. The allowance revenue values in Table 8-2 do not reflect offset allowances.

<sup>73</sup> Emissions for the PJM states includes all power generators located in the state and is not limited to generators participating in the PJM energy markets.

<sup>74</sup> A banked allowance is an allowance acquired during a previous control period that was not used to fulfill a RGGI allowance obligation

<sup>75 &</sup>quot;First Control Period Interim Adjustment for Banked Allowances Announcements," Regional Greenhouse Gas Initiative (Jan. 13, 2014), <a href="https://www.rggi.org/sites/default/files/Uploads/Design-Archive/2012-2012-2014">https://www.rggi.org/sites/default/files/Uploads/Design-Archive/2012-2012-2014</a> eview/Adjustments/2014 01 13 FCP Adjustment.pdf>

applying only to the Connecticut allowance budget, brings the overall cap adjustment to 8,207,664 allowances per year.<sup>76</sup> A second cap adjustment, corresponding to banked allowances for 2012 and 2013, began in 2015 with an adjustment of 13,683,744 allowances per year and will be in place through 2020.<sup>77</sup> The RGGI clearing price since 2014 has been on average 98.4 percent higher than the prices prior to the emission cap adjustments.

Table 8-3 RGGI emissions cap history<sup>78 79</sup>

|      |         | RGGI Average       |              |         |                  |         |
|------|---------|--------------------|--------------|---------|------------------|---------|
|      | Control | Clearing Price     | RGGI Cap     | Percent | RGGI Adjusted    | Percent |
|      | Period  | (\$ per short ton) | (short tons) | Change  | Cap (short tons) | Change  |
| 2009 | _       | \$2.77             | 188,000,000  |         | 188,000,000      |         |
| 2010 | 1st     | \$1.93             | 188,000,000  | 0.0%    | 188,000,000      | 0.0%    |
| 2011 | _       | \$1.89             | 188,000,000  | 0.0%    | 188,000,000      | 0.0%    |
| 2012 |         | \$1.93             | 165,000,000  | (12.2%) | 165,000,000      | (12.2%) |
| 2013 | 2nd     | \$2.92             | 165,000,000  | 0.0%    | 165,000,000      | 0.0%    |
| 2014 |         | \$4.72             | 91,000,000   | (44.8%) | 82,792,336       | (49.8%) |
| 2015 |         | \$6.10             | 88,725,000   | (2.5%)  | 66,833,592       | (19.3%) |
| 2016 | 3rd     | \$4.47             | 86,506,875   | (2.5%)  | 64,615,467       | (3.3%)  |
| 2017 |         | \$3.42             | 84,344,203   | (2.5%)  | 62,452,795       | (3.3%)  |
| 2018 |         | \$4.41             | 82,235,598   | (2.5%)  | 60,344,190       | (3.4%)  |
| 2019 | 4th     | \$5.43             | 80,179,708   | (2.5%)  | 58,288,301       | (3.4%)  |
| 2020 | _       |                    | 96,175,215   | 19.9%   | 74,283,807       | 27.4%   |

If higher carbon prices were implemented in PJM, the associated revenues flowing to states would also increase. Table 8-4 shows the estimated allowance revenue for PJM states for carbon prices ranging from \$10 per short ton to \$50 per short ton and for emissions reductions ranging from five percent to 50 percent. Allowance revenues to states would be \$19.9 billion if the carbon price were \$50 per short ton and emission levels were five percent below 2018 levels. Allowance revenues to states would be \$2.1 billion if the carbon price were \$10 per short ton and emission levels were 50 percent below 2018.

<sup>76</sup> Id at 2. Due to rounding, the adjustment is 8,207,664 allowances for years 2014 through 2018, and 8,207,663 allowances for the remaining two years.

<sup>77 &</sup>quot;Second Control Period Interim Adjustment for Banked Allowances Announcement," Regional Greenhouse Gas Initiative (March 17, 2014), <a href="https://www.rggi.org/sites/default/files/Uploads/Design-Archive/2012-Review/Adjustments/2014\_03\_17\_SCP\_Adjustment.pdf">https://www.rggi.org/sites/default/files/Uploads/Design-Archive/2012-Review/Adjustments/2014\_03\_17\_SCP\_Adjustment.pdf</a>.

<sup>78</sup> See Regional Greenhouse Gas Initiative, "Elements of RGGI" and "Auction Results," <a href="https://www.rggi.org/">https://www.rggi.org/</a> (Accessed June 25, 2019).

<sup>79</sup> The increase in the RGGI Cap and the RGGI Adjusted Cap in 2020 is due to the reentry of New Jersey. The new cap is 18 million short tons higher than the previously published 2020 caps

Table 8-4 Estimated  ${\rm CO_2}$  allowance revenue at various carbon prices

|                  | 5 percent reduction below | 10 percent      | 15 percent         | 20 percent      | 05 1            |                 |
|------------------|---------------------------|-----------------|--------------------|-----------------|-----------------|-----------------|
|                  | reduction below           |                 | . o percent        | 20 percent      | 25 percent      | 50 percent      |
|                  | reametion octon           | reduction below | reduction below    | reduction below | reduction below | reduction below |
|                  | 2018 emission             | 2018 emission   | 2018 emission      | 2018 emission   | 2018 emission   | 2018 emission   |
|                  | levels                    | levels          | levels             | levels          | levels          | levels          |
| Jurisdiction     |                           | Carbon Price    | (\$ per short ton) |                 | \$10.00         |                 |
| Delaware         | \$26.8                    | \$25.4          | \$24.0             | \$22.6          | \$21.2          | \$14.1          |
| Illinois         | \$331.7                   | \$314.3         | \$296.8            | \$279.3         | \$261.9         | \$174.6         |
| Indiana          | \$467.4                   | \$442.8         | \$418.2            | \$393.6         | \$369.0         | \$246.0         |
| Kentucky         | \$284.9                   | \$269.9         | \$254.9            | \$239.9         | \$224.9         | \$149.9         |
| Maryland         | \$163.1                   | \$154.5         | \$145.9            | \$137.3         | \$128.8         | \$85.8          |
| Michigan         | \$0.0                     | \$0.0           | \$0.0              | \$0.0           | \$0.0           | \$0.0           |
| New Jersey       | \$147.5                   | \$139.7         | \$131.9            | \$124.2         | \$116.4         | \$77.6          |
| North Carolina   | \$2.9                     | \$2.7           | \$2.6              | \$2.4           | \$2.3           | \$1.5           |
| Ohio             | \$844.8                   | \$800.3         | \$755.8            | \$711.4         | \$666.9         | \$444.6         |
| Pennsylvania     | \$773.4                   | \$732.7         | \$692.0            | \$651.3         | \$610.6         | \$407.1         |
| Tennessee        | \$0.0                     | \$0.0           | \$0.0              | \$0.0           | \$0.0           | \$0.0           |
| Virginia         | \$326.8                   | \$309.6         | \$292.4            | \$275.2         | \$258.0         | \$172.0         |
| Washington, D.C. | \$0.0                     | \$0.0           | \$0.0              | \$0.0           | \$0.0           | \$0.0           |
| West Virginia    | \$616.1                   | \$583.6         | \$551.2            | \$518.8         | \$486.4         | \$324.2         |
| Total            | \$3,985.3                 | \$3,775.6       | \$3,565.8          | \$3,356.1       | \$3,146.3       | \$2,097.5       |
|                  |                           | Carbon Price    | (\$ per short ton) |                 | \$25.00         |                 |
| Delaware         | \$67.0                    | \$63.5          | \$59.9             | \$56.4          | \$52.9          | \$35.3          |
| Illinois         | \$829.3                   | \$785.7         | \$742.0            | \$698.4         | \$654.7         | \$436.5         |
| Indiana          | \$1,168.6                 | \$1,107.1       | \$1,045.6          | \$984.1         | \$922.6         | \$615.0         |
| Kentucky         | \$712.3                   | \$674.8         | \$637.3            | \$599.8         | \$562.3         | \$374.9         |
| Maryland         | \$407.7                   | \$386.3         | \$364.8            | \$343.4         | \$321.9         | \$214.6         |
| Michigan         | \$0.0                     | \$0.0           | \$0.0              | \$0.0           | \$0.0           | \$0.0           |
| New Jersey       | \$368.6                   | \$349.2         | \$329.8            | \$310.4         | \$291.0         | \$194.0         |
| North Carolina   | \$7.2                     | \$6.8           | \$6.4              | \$6.0           | \$5.7           | \$3.8           |
| Ohio             | \$2,111.9                 | \$2,000.7       | \$1,889.6          | \$1,778.4       | \$1,667.3       | \$1,111.5       |
| Pennsylvania     | \$1,933.6                 | \$1,831.8       | \$1,730.1          | \$1,628.3       | \$1,526.5       | \$1,017.7       |
| Tennessee        | \$0.0                     | \$0.0           | \$0.0              | \$0.0           | \$0.0           | \$0.0           |
| Virginia         | \$817.0                   | \$774.0         | \$731.0            | \$688.0         | \$645.0         | \$430.0         |
| Washington, D.C. | \$0.0                     | \$0.0           | \$0.0              | \$0.0           | \$0.0           | \$0.0           |
| West Virginia    | \$1,540.2                 | \$1,459.1       | \$1,378.1          | \$1,297.0       | \$1,215.9       | \$810.6         |
| Total            | \$9,963.3                 | \$9,438.9       | \$8,914.6          | \$8,390.2       | \$7,865.8       | \$5,243.9       |
|                  |                           | Carbon Price    | (\$ per short ton) |                 | \$50.00         |                 |
| Delaware         | \$134.0                   | \$126.9         | \$119.9            | \$112.8         | \$105.8         | \$70.5          |
| Illinois         | \$1,658.6                 | \$1,571.3       | \$1,484.0          | \$1,396.7       | \$1,309.4       | \$873.0         |
| Indiana          | \$2,337.1                 | \$2,214.1       | \$2,091.1          | \$1,968.1       | \$1,845.1       | \$1,230.1       |
| Kentucky         | \$1,424.5                 | \$1,349.5       | \$1,274.6          | \$1,199.6       | \$1,124.6       | \$749.7         |
| Maryland         | \$815.5                   | \$772.5         | \$729.6            | \$686.7         | \$643.8         | \$429.2         |
| Michigan         | \$0.0                     | \$0.0           | \$0.0              | \$0.0           | \$0.0           | \$0.0           |
| New Jersey       | \$737.3                   | \$698.5         | \$659.7            | \$620.9         | \$582.1         | \$388.0         |
| North Carolina   | \$14.4                    | \$13.6          | \$12.8             | \$12.1          | \$11.3          | \$7.6           |
| Ohio             | \$4,223.8                 | \$4,001.5       | \$3,779.2          | \$3,556.9       | \$3,334.6       | \$2,223.0       |
| Pennsylvania     | \$3,867.2                 | \$3,663.6       | \$3,460.1          | \$3,256.6       | \$3,053.0       | \$2,035.4       |
| Tennessee        | \$0.0                     | \$0.0           | \$0.0              | \$0.0           | \$0.0           | \$0.0           |
| Virginia         | \$1,634.0                 | \$1,548.0       | \$1,462.0          | \$1,376.0       | \$1,290.0       | \$860.0         |
| Washington, D.C. | \$0.0                     | \$0.0           | \$0.0              | \$0.0           | \$0.0           | \$0.0           |
| West Virginia    | \$3,080.3                 | \$2,918.2       | \$2,756.1          | \$2,594.0       | \$2,431.9       | \$1,621.2       |
| Total            | \$19,926.7                | \$18,877.9      | \$17,829.1         | \$16,780.3      | \$15,731.6      | \$10,487.7      |

Table 8-5 shows the estimated impact of three different carbon prices on PJM load-weighted LMP. For example, if the carbon price were \$5.00 per tonne, the PJM load-weighted average LMP in the first nine months of 2019 would have increased by 5.9 percent.<sup>80</sup>

Table 8-5 Estimated impact of Carbon price on LMP: 2018 and 2019

|            |                 | 2          | 018        |               | 2019     |          |        |  |
|------------|-----------------|------------|------------|---------------|----------|----------|--------|--|
|            | Carbon Price    | Actual LMP | Actual LMP | Estimated LMP | Percent  |          |        |  |
| Scenario   | (\$/Metric Ton) | (\$/MWh)   | (\$/MWh)   | Change        | (\$/MWh) | (\$/MWh) | Change |  |
| Scenario 1 | \$5.00          | \$38.24    | \$39.94    | 4.4%          | \$27.32  | \$28.94  | 5.9%   |  |
| Scenario 2 | \$10.00         | \$38.24    | \$41.80    | 9.3%          | \$27.32  | \$30.71  | 12.4%  |  |
| Scenario 3 | \$15.00         | \$38.24    | \$43.66    | 14.2%         | \$27.32  | \$32.48  | 18.9%  |  |

#### State Renewable Portfolio Standards

Nine of 14 PJM jurisdictions have enacted legislation that requires that a defined percentage of retail load be served by renewable resources, for which there are many standards and definitions. These requirements are known as renewable portfolio standards, or RPS. In PJM jurisdictions that have adopted an RPS, load serving entities are required by law to meet defined shares of load using specific renewable and/or alternative energy sources commonly called eligible technologies. Load serving entities may generally fulfill these obligations in one of two ways: they may use their own generation resources classified as eligible technologies to produce power or they may purchase renewable energy credits (RECs) that represent a known quantity of power produced with eligible technologies by other market participants or in other geographical locations. Load serving entities that fail to meet the percent goals set in their jurisdiction's RPS must pay penalties (alternative compliance payments).

Renewable energy sources replenish naturally in a short period of time but are flow limited and include solar, geothermal, wind, biomass and hydropower from flowing water. Renewable energy sources are virtually inexhaustible in duration but limited in the amount of energy that is available per unit of time. Nonrenewable energy sources do not replenish in a short period of time and include crude oil, natural gas, coal and uranium

(nuclear energy).<sup>81</sup> Some state rules allow nonrenewable energy sources as part of their Renewable Portfolio Standard.

As of December 31, 2019, Delaware, Illinois, Maryland, Michigan, New Jersey, North Carolina, Ohio, Pennsylvania, and Washington, DC had mandatory

renewable portfolio standards that include penalties.

As of December 31, 2019, Virginia and Indiana had voluntary renewable portfolio standards that do not require

participation and do not include noncompliance penalties. Incentives are offered to load serving entities to develop renewable generation or, to a more limited extent, purchase RECs. The voluntary standard was enacted by the Indiana legislature in 2011, but no load serving entities have volunteered to participate in the program.<sup>82</sup>

As of December 31, 2019, Kentucky, Tennessee and West Virginia have no renewable portfolio standards.

How each state satisfies its renewable portfolio standard requirements should be more transparent. While some jurisdictions publish transparent information regarding total REC generation, how the standard is fulfilled and the total cost to the state, some jurisdictions do not provide the same level of detail and there can be a significant lag from the end of the compliance year to the publication of the information. Some states provide adequate information with respect to the total cost for the RPS, where the RECs originated that fulfill the RPS requirements, and if the state fulfilled the RPS goals. Pennsylvania and Maryland both provide more information than other states and serve as a model for other states. The MMU recommends that jurisdictions with a renewable portfolio standard make the compliance data and cost data available in a more complete and transparent manner.

Since a REC may be applied in years other than the year in which it was generated, each vintage of RECs for each state has a different price. For example, the

<sup>80</sup> LMPs are recalculated to account for the defined cost of carbon emissions on marginal units' offer prices. The LMP calculation is not based on a counterfactual redispatch of the system to determine the marginal units and the marginal costs that would have occurred if all units had made all offers at short run marginal cost. See Technical Reference for PJM Markets, "Calculation and Use of Generator Sensitivity/Unit Participation Factors," <a href="http://www.monitoringanalytics.com/reports/Technical References/References/Senthyllows.">http://www.monitoringanalytics.com/reports/Technical References/References/Senthyllows.</a>

<sup>81</sup> Renewable Energy Explained, U.S. Energy Information Administration, <a href="https://www.eia.gov/energyexplained/index.php?page=renewable\_home">https://www.eia.gov/energyexplained/index.php?page=renewable\_home</a>> (Accessed October 23, 2019).

<sup>82</sup> See the Indiana Utility Regulatory Commission's "2019 Annual Report," at 35 (Oct. 2019) <a href="https://www.in.gov/iure/2981.htm">https://www.in.gov/iure/2981.htm</a>.

Pennsylvania Alternative Energy Portfolio Standard allows an electric distribution company or generation supplier to retain RECs from the current reporting year for use toward satisfying their REC obligation in either of the two subsequent reporting years.83

Table 8-6 shows the percent of retail electric load that must be served by renewable and/or alternative energy resources under each PJM jurisdictions' RPS by year.

Table 8-6 Renewable and alternative energy standards of PJM jurisdictions: 2019 to 203084

| Jurisdiction with RPS                | 2019      | 2020          | 2021     | 2022            | 2023            | 2024   | 2025   | 2026            | 2027            | 2028   | 2029            | 2030             |
|--------------------------------------|-----------|---------------|----------|-----------------|-----------------|--------|--------|-----------------|-----------------|--------|-----------------|------------------|
| Delaware                             | 19.00%    | 20.00%        | 21.00%   | 22.00%          | 23.00%          | 24.00% | 25.00% | 25.00%          | 25.00%          | 25.00% | 25.00%          | 25.00%           |
| Illinois                             | 14.50%    | 16.00%        | 17.50%   | 19.00%          | 20.50%          | 22.00% | 23.50% | 25.00%          | 25.00%          | 25.00% | 25.00%          | 25.00%           |
| Maryland                             | 23.20%    | 30.50%        | 30.80%   | 33.10%          | 35.40%          | 37.70% | 40.00% | 42.50%          | 45.50%          | 47.50% | 49.50%          | 50.00%           |
| Michigan                             | 12.50%    | 12.50%        | 15.00%   | 15.00%          | 15.00%          | 15.00% | 15.00% | 15.00%          | 15.00%          | 15.00% | 15.00%          | 15.00%           |
| New Jersey                           | 18.53%    | 23.50%        | 23.50%   | 24.50%          | 29.50%          | 37.50% | 40.50% | 43.50%          | 46.50%          | 49.50% | 52.50%          | 52.50%           |
| North Carolina                       | 10.00%    | 10.00%        | 12.50%   | 12.50%          | 12.50%          | 12.50% | 12.50% | 12.50%          | 12.50%          | 12.50% | 12.50%          | 12.50%           |
| Ohio                                 | 5.50%     | 5.50%         | 6.00%    | 6.50%           | 7.00%           | 7.50%  | 8.00%  | 8.50%           | 0.00%           | 0.00%  | 0.00%           | 0.00%            |
| Pennsylvania                         | 15.20%    | 15.70%        | 18.00%   | 18.00%          | 18.00%          | 18.00% | 18.00% | 18.00%          | 18.00%          | 18.00% | 18.00%          | 18.00%           |
| Washington, DC                       | 18.00%    | 20.00%        | 26.25%   | 32.50%          | 38.75%          | 45.00% | 52.00% | 59.00%          | 66.00%          | 73.00% | 80.00%          | 87.00%           |
| Jurisdiction with Voluntary Standard |           |               |          |                 |                 |        |        |                 |                 |        |                 |                  |
| Indiana                              | 7.00%     | 7.00%         | 7.00%    | 7.00%           | 7.00%           | 7.00%  | 10.00% | 0.00%           | 0.00%           | 0.00%  | 0.00%           | 0.00%            |
| Virginia                             | 7.00%     | 7.00%         | 7.00%    | 12.00%          | 12.00%          | 12.00% | 15.00% | 15.00%          | 15.00%          | 15.00% | 15.00%          | 15.00%           |
| Jurisdiction with No Standard        |           |               |          |                 |                 |        |        |                 |                 |        |                 |                  |
| Kentucky                             | No Renewa | ole Portfolio | Standard | , in the second | , in the second |        |        | , in the second | , in the second |        | , in the second | , and the second |
| Tennessee                            | No Renewa | ole Portfolio | Standard |                 |                 |        |        |                 |                 |        |                 |                  |
| West Virginia                        | No Renewa | ole Portfolio | Standard | ·               | ·               |        |        | ·               | ·               |        | ·               |                  |

In 2018, New Jersey passed legislation that included provisions promoting the development of solar power in the state.85 The Board of Public Utilities is directed to develop and provide an orderly transition to a new or modified program to support distributed solar. The Board must also design a Community Solar Energy Pilot Program that would "permit customers of an electric public utility to participate in a solar energy project that is remotely located from their properties but is within their electric public utility service territory to allow for a credit to the customer's utility bill equal to the electricity generated that is attributed to the customer's participation in the solar energy project." The pilot program would convert into a permanent program within three years. The statute targets the development of 600 MW of electric storage by 2021 and 2,000 MW by 2030. Table 8-7 summarizes recent rules changes in Ohio, Maryland, New Jersey, and Washington DC.

<sup>83</sup> Pennsylvania General Assembly, "Alternative Energy Portfolio Standards Act - Enactment Act of Nov. 30, 2004, P.L. 1672, No. 213," Section (e)(6).

<sup>84</sup> This shows the total standard of alternative resources in all PJM jurisdictions, including Tier I and Tier II.

<sup>85</sup> N.J. S. 2314/A. 3723.

Table 8-7 Recent changes in RPS rules<sup>86 87 88 89</sup>

| Jurisdiction     | Legislation                                     | Effective Date   | Summary of changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------|-------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ohio             | House Bill 6                                    | October 22, 2019 | Reduced the RPS percent for each year beginning in 2020. The 2020 standard was reduced from 6.5 percent to 5.5 percent; the 2026 standard was reduced from 12.5 percent to 8.5 percent. The legislation also removed language that had previously indicated that the standard would remain at the 2026 level for each year after 2026. The solar carve out was removed for compliance year 2020 and beyond. Prior to the recent legislation, the solar carve out was 0.26 percent for 2020, increased to 0.50 percent for 2026, and remained at 0.50 percent for subsequent years.                                                                                                  |
| Maryland         | Clean Energy Jobs Act                           | May 25, 2019     | Established a new Tier I target of 50.0 percent in 2030; previously the 2030 Tier I standard was 25.0 percent. The 2019 Tier I standard increased from 20.4 percent to 20.7. The solar carve out percent for 2019 increased from 1.95 percent to 5.50 percent. The solar carve out percent for 2030 increased from 2.5 percent to 14.5 percent. The 2.5 percent Tier II standard, scheduled to end in 2018, was extended through 2020.                                                                                                                                                                                                                                              |
| Washington, D.C. | CleanEnergy DC Omnibus<br>Amendment Act of 2018 | March 22, 2019   | Established a 100 percent Tier I renewable standard by 2032. Previously, the 2032 target was 50.0 percent. Tier I increases start in 2020, going from 20.0 percent to 26.25 percent. The 2020 solar carve out will increase from 1.58 percent to 2.175 percent. The 2041 target for the solar carve out is 10.0 percent.                                                                                                                                                                                                                                                                                                                                                            |
| New Jersey       | Clean Energy Act                                | May 24, 2018     | Established a 50.0 percent Class I renewable standard for the 2029/2030 compliance year, and an intermediate target of 35.0 percent Class I renewable standard for the 2024/2025 compliance year. Prior to this legislation, the target percent for Class I renewable was 17.9 percent for the 2020/2021 compliance year. The legislation also included an increase in the solar standard for 2018/2019 compliance year from 3.29 percent to 4.3 percent, and an increase to 5.1 percent for the 2020/2021 compliance year. The solar standard decreases to 4.9 percent in the 2023/2024 compliance year, and gradually decreases to 1.1 percent for the 2032/2033 compliance year. |

New Jersey and Maryland have taken significant steps to promote offshore wind. Both states enacted legislation for offshore wind renewable energy credits (ORECs) in 2010.90 On May 24, 2018, New Jersey enacted a statute directing the Board of Public Utilities to create an OREC program targeting installation of at least 3,500 MW of generation from qualified offshore wind projects by 2030 (plus 2,000 MW of energy storage capacity).91 The New Jersey statute also reinstates certain tax incentives for offshore wind manufacturing activities. Governor Murphy has issue Executive Order No. 8, which calls for full implementation of the statute. The offshore wind target has since been increased to 7,500 MW by 2035.92 The BPU opened a 100 day application window for qualified offshore wind projects on September 20, 2018, and on June, 21, 2019, the first award for a 1,100 MW offshore wind project was granted to Orsted.93 94

In 2017, the Maryland Public Service Commission announced two awards of ORECs to two commercial wind projects, Deepwater Wind's 120-MW Skipjack Wind Farm and U.S. Wind's 248-MW project. Deepwater Wind has since been acquired by Orsted.95 These project awards are the first under Maryland's 2010 OREC program.

On July 1, 2019, Dominion Energy announced the beginning of construction on an offshore wind demonstration project. The project consists of two 6 MW offshore wind turbines.<sup>96</sup> In September 2019, Dominion filed an interconnection agreement with PJM associated with its proposal to develop a 2,600 MW offshore wind farm.97

Each PJM jurisdiction with an RPS identifies the type of generation resources that may be used for compliance. These resources are often called eligible technologies. Some PJM jurisdictions with RPS group different eligible technologies into tiers based on the magnitude of their environmental impact. Of the nine PJM jurisdictions with

<sup>86</sup> See Ohio Legislature House, 133th Assembly, Bill 6, "Ohio Clean Air Program," effective Date October 22, 2019, <a href="https://www.legislature.ohio.gov/legislation/legislation-summary?id=GA133-HB-6>">https://www.legislature.ohio.gov/legislation/legislation-summary?id=GA133-HB-6>">https://www.legislature.ohio.gov/legislation/legislation-summary?id=GA133-HB-6>">https://www.legislature.ohio.gov/legislation/legislation-summary?id=GA133-HB-6>">https://www.legislature.ohio.gov/legislation/legislation-summary?id=GA133-HB-6>">https://www.legislature.ohio.gov/legislation/legislation-summary?id=GA133-HB-6>">https://www.legislature.ohio.gov/legislation/legislation-summary?id=GA133-HB-6>">https://www.legislature.ohio.gov/legislation/legislation-summary?id=GA133-HB-6>">https://www.legislature.ohio.gov/legislation-summary?id=GA133-HB-6>">https://www.legislature.ohio.gov/legislation-summary?id=GA133-HB-6>">https://www.legislature.ohio.gov/legislation-summary?id=GA133-HB-6>">https://www.legislature.ohio.gov/legislation-summary?id=GA133-HB-6>">https://www.legislature.ohio.gov/legislation-summary?id=GA133-HB-6>">https://www.legislature.ohio.gov/legislation-summary?id=GA133-HB-6>">https://www.legislature.ohio.gov/legislation-summary?id=GA133-HB-6>">https://www.legislature.ohio.gov/legislation-summary?id=GA133-HB-6>">https://www.legislature.ohio.gov/legislation-summary?id=GA133-HB-6>">https://www.legislature.ohio.gov/legislation-summary?id=GA133-HB-6>">https://www.legislature.ohio.gov/legislation-summary?id=GA133-HB-6>">https://www.legislature.ohio.gov/legislature.ohio.gov/legislature.ohio.gov/legislature.ohio.gov/legislature.ohio.gov/legislature.ohio.gov/legislature.ohio.gov/legislature.ohio.gov/legislature.ohio.gov/legislature.ohio.gov/legislature.ohio.gov/legislature.ohio.gov/legislature.ohio.gov/legislature.ohio.gov/legislature.ohio.gov/legislature.ohio.gov/legislature.ohio.gov/legislature.ohio.gov/legislature.ohio.gov/legislature.ohio.gov/legislature.ohio.gov/legislature.ohio.gov/legislature.ohio.gov/legislature.ohio.gov/

<sup>87</sup> See Maryland State Legislature, Senate Bill 516, "Clean Energy Jobs," Passed May 25, 2019, <a href="https://legiscan.com/md/text/sb516/2019">https://legiscan.com/md/text/sb516/2019</a>>

<sup>88</sup> D.C. Law 22-257 "CleanEnergy DC Omnibus Amendment Act of 2018," Effective March 22, 2019, <a href="https://code.decouncil.lus/dc/council/laws/22-257.html">https://code.decouncil.us/dc/council/laws/22-257.html</a>.

<sup>89</sup> See New Jersey CleanEnergy Program, RPS Background Info, <a href="http://njcleanenergy.com/renewable-energy/program-activity-and-background-information/rps-background-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-info-sekground-i

<sup>90</sup> See Offshore Wind Economic Development Act of 2010, P.L. 2010, c. 57, as amended, N.J.S.A. 48:3-87 to -87.2.

<sup>91</sup> N.J. S. 2314/A. 3723.

<sup>92</sup> Executive Order 92, Philip D. Murphy, Governor of New Jersey (November 19, 2019) <a href="https://nj.gov/infobank/eo/056murphy/approved/eo\_archive.html">https://nj.gov/infobank/eo/056murphy/approved/eo\_archive.html</a>>.

<sup>94 &</sup>quot;New Jersey Board of Public Utilities Awards Historic 1,100 MW Offshore Wind Solicitation to Orsted's Ocean Wind Project", New Jersey BPU Press Release (June 21, 2019) <a href="https://nj.gov/bpu/newsroom/2019/">https://nj.gov/bpu/newsroom/2019/</a> approved/20190621.html

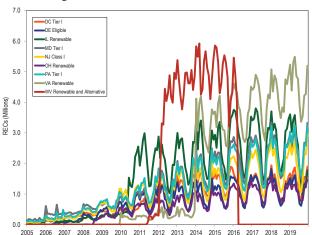
<sup>95 &</sup>quot;Orsted Acquires Deepwater Wind and creates leading US Offshore Wind Platform", ORSTED Press Release (August 10, 2018).

<sup>97 &</sup>quot;Dominion Energy Announces Largest Offshore Wind Project in US", Dominion Energy News Release (September 19, 2019) <a href="https://news.dominionenergy.com/2019-09-19-Dominion-Energy-Announces-2019">https://news.dominionenergy.com/2019-09-19-Dominion-Energy-Announces-2019</a>

mandatory RPS, Maryland, New Jersey, Pennsylvania, and Washington, DC group the eligible technologies that must be used to comply with their RPS programs into Tier I and Tier II resources.98 Although there are minor differences across these four jurisdictions' definitions of Tier I resources, technologies that use solar photovoltaic, solar thermal, wind, ocean, tidal, biomass, low-impact hydro, and geothermal sources to produce electricity are classified as Tier I resources. Table 8-8 shows the Tier I standards for PJM states.99 All eligible technologies for the RPS standards in Table 8-8 satisfy the EIA definition of renewable energy. 100

for multiple states based on the RPS requirements. Table 8-17 describes the state's renewable portfolio standard's geographical restrictions governing the source of RECs to satisfy each state's standards. The figure includes Tier I or the equivalent REC type available in each state. Washington, DC, Maryland, and Pennsylvania classify these RECs as Tier I, New Jersey classifies the RECs as Class I and Delaware, Illinois, Ohio, Virginia and West Virginia classify these RECs as renewable or eligible. West Virginia repealed its renewable portfolio standard, and Virginia has a voluntary renewable portfolio standard.

Table 8-8 Tier I / Class I renewable standards of PJM jurisdictions: 2019 to 2030


| Jurisdiction with RPS | 2019   | 2020   | 2021   | 2022   | 2023   | 2024   | 2025   | 2026   | 2027   | 2028   | 2029   | 2030   |
|-----------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Maryland              | 20.70% | 28.00% | 30.80% | 33.10% | 35.40% | 37.70% | 40.00% | 42.50% | 45.50% | 47.50% | 49.50% | 50.00% |
| New Jersey            | 16.03% | 21.00% | 21.00% | 22.00% | 27.00% | 35.00% | 38.00% | 41.00% | 44.00% | 47.00% | 50.00% | 50.00% |
| Pennsylvania          | 7.00%  | 7.50%  | 8.00%  | 8.00%  | 8.00%  | 8.00%  | 8.00%  | 8.00%  | 8.00%  | 8.00%  | 8.00%  | 8.00%  |
| Washington, D.C.      | 17.50% | 20.00% | 26.25% | 32.50% | 38.75% | 45.00% | 52.00% | 59.00% | 66.00% | 73.00% | 80.00% | 87.00% |

Delaware, Illinois, Michigan, North Carolina, and Ohio do not classify the resources eligible for their RPS standards by tiers. In these states eligible technologies are largely but not completely renewable resources. 101

RECs do not need to be used during the year in which they are generated. The result is that there may be multiple prices for a REC based on the year in which it was generated. RECs typically have a shelf life of five years during which they can be used to satisfy a state's RPS requirement. For example if a load serving entity (LSE) owns renewable generation and the renewable generation exceeds the LSE's RECs purchase obligation for the current year, the LSE can either sell the REC to another LSE or hold the REC for use in a subsequent

Figure 8-2 shows the number of RECs eligible monthly by state for January 1, 2005, through December 31, 2019. 102 REC eligibility by state is the number of RECs created in a month that the state could use to fulfill a state's RPS goal. One REC created during a month could be eligible

Figure 8-2 Number of RECs eligible monthly by state: 2005 through 2019<sup>103</sup>



The REC prices are the average price for each vintage of REC, defined by the year in which the associated power was generated, regardless of when the REC is consumed. REC prices are required to be publicly disclosed in Maryland, Pennsylvania and Washington, DC, but in the other states REC prices are not publicly available.

Figure 8-3 shows the average Tier I REC price by jurisdiction from January 1, 2009, through December

<sup>98</sup> New Jersey separates technologies into Class I/Class II resources in a manner that is consistent

with the other jurisdictions' Tier I/Tier II categorizations. 99 This includes New Jersey's Class I renewable standard.

<sup>100</sup> Renewable Energy Explained, U.S. Energy Information Administration, <a href="https://www.eia">https://www.eia</a> gov/energyexplained/index.php?page=renewable\_home> (Accessed October 17, 2019).

<sup>101</sup> Michigan's Public Act 342, effective April 20, 2017, removed nonrenewable technologies (e.g. coal gasification, industrial cogeneration, and coal with carbon capture) from the list of RPS eligible

<sup>102</sup> Tier I REC volume obtained through PJM Environmental Information Services <a href="https://www.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm-numerical.new.pjm eis.com/reports-and-events/public-reports.aspx> (Accessed January 24, 2020)

<sup>103</sup> West Virginia eligible MW drop to 0 in 2016 with the repeal of the state's renewable portfolio

31, 2019. Tier I REC prices are lower than SREC prices. For example, the average SREC price in Washington, DC in 2019 was \$395.45 and the average Tier I price in Washington, DC in 2019 was \$2.76.

Figure 8-3 Average Tier I REC price by jurisdiction: 2009 through 2019

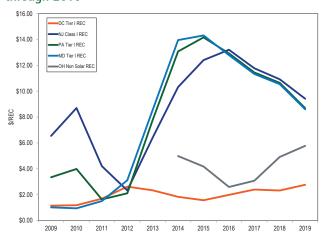
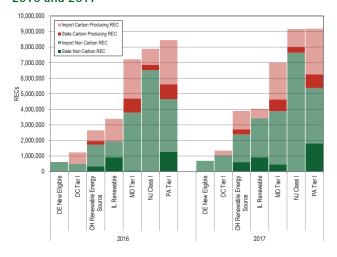




Figure 8-4 and Table 8-9 show the fulfillment of Tier I equivalent RPS requirement for 2016 and 2017 by state and by import and internal RECs and by carbon producing and noncarbon producing RECs. 104 Depending on the state, the RPS requirement can be fulfilled by wind, solar, hydro ("Noncarbon REC") or with landfill gas, captured methane, wood, black liquor, and other fuels. ("Carbon Producing REC"). States' Tier I requirements are not all carbon free. The DC New Eligible requirement is fulfilled by Non Carbon RECs, but all other state Tier I equivalent RPS requirements allow carbon producing RECs to fulfill the RPS requirements. Figure 8-4 shows the use of imported and local carbon producing RECs and imported and local non carbon RECs by state to meet the RPS requirements. Table 8-9 shows the percent of imported and local carbon producing RECs and imported and local non carbon RECs by state used to meet the RPS requirements. For example, Pennsylvania met its Tier I target using 73.9 percent imported RECs, and 26.2 percent State RECs for the 2016 compliance year. Pennsylvania met its Tier I target using 55.3 percent non carbon producing RECs, and 44.8 percent carbon producing RECs for the 2016 compliance year. Pennsylvania met its Tier I target using

70.9 percent imported RECs, and 29.0 percent State RECs for the 2017 compliance year. Pennsylvania met its Tier I target using 58.5 percent non carbon producing RECs, and 41.4 percent carbon producing RECs for the 2017 compliance year.

Figure 8-4 State fulfillment of Tier I equivalent RPS: 2016 and 2017



<sup>104</sup> Retired REC information obtained through PJM GATS <a href="https://gats.pjm-eis.com/gats2/">https://gats.pjm-eis.com/gats2/</a> ublicReports/RPSRetiredCertificatesReportingYear> (Accessed January 23, 2020)

Table 8-9 State fulfillment of Tier I equivalent RPS: 2016 and 2017

|      |                            | State Non  | Import Non | State Carbon  | Import Carbon |
|------|----------------------------|------------|------------|---------------|---------------|
| Year | REC Type                   | Carbon REC | Carbon REC | Producing REC | Producing REC |
| 2016 | DE New Eligible            | 1.0%       | 99.0%      | 0.0%          | 0.0%          |
|      | DC Tier I                  | 0.0%       | 40.5%      | 0.0%          | 59.5%         |
|      | OH Renewable Energy Source | 12.3%      | 52.8%      | 8.7%          | 26.2%         |
|      | IL Renewable               | 27.1%      | 30.3%      | 0.1%          | 42.5%         |
|      | MD Tier I                  | 0.8%       | 51.7%      | 12.5%         | 35.0%         |
|      | NJ Class I                 | 0.0%       | 82.5%      | 4.5%          | 13.0%         |
|      | PA Tier I                  | 15.1%      | 40.2%      | 11.1%         | 33.7%         |
|      |                            |            |            |               |               |
| 2017 | DE New Eligible            | 0.7%       | 99.3%      | 0.0%          | 0.0%          |
|      | DC Tier I                  | 0.0%       | 77.2%      | 0.0%          | 22.8%         |
|      | OH Renewable Energy Source | 15.6%      | 45.8%      | 8.1%          | 30.6%         |
|      | IL Renewable               | 22.5%      | 62.3%      | 0.0%          | 15.2%         |
|      | MD Tier I                  | 6.5%       | 48.9%      | 10.7%         | 34.0%         |
|      | NJ Class I                 | 0.1%       | 83.2%      | 3.9%          | 12.8%         |
|      | PA Tier I                  | 19.6%      | 38.9%      | 9.4%          | 32.0%         |

Table 8-10 shows the percent of retail electric load that must be served by Tier II or a specific type of resource under each PJM jurisdiction's RPS by year. Tier II resources are generally not renewable resources. Table 8-10 also shows specific technology requirements that PJM jurisdictions have added to their renewable portfolio standards. The standards shown in Table 8-10 are included in the total RPS requirements presented in Table 8-6. Illinois requires that a defined proportion of retail load be served by wind and solar resources, increasing from 9.75 percent of load served in 2018 to 18.75 percent in 2026. Maryland, New Jersey, Pennsylvania and Washington, DC all have Tier II or Class 2 standards, which allow specific nonrenewable technology types, such as waste coal units located in Pennsylvania, to qualify for renewable energy credits. By 2021, North Carolina's RPS requires that 0.2 percent of power be generated using swine waste and that 900 GWh of power be produced by poultry waste. Maryland established a minimum standard for offshore wind in 2017 that takes effect in 2021 with a requirement that 1.37 percent of load be served by offshore wind. The standard increases to 2.03 percent in 2023. 105

Table 8-10 Additional renewable standards of PJM jurisdictions: 2019 to 2030


| Jurisdiction     | Type of Standard       | 2019  | 2020  | 2021   | 2022   | 2023   | 2024   | 2025   | 2026   | 2027   | 2028   | 2029   | 2030   |
|------------------|------------------------|-------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Illinois         | Distributed Generation | 0.15% | 0.16% | 0.18%  | 0.19%  | 0.21%  | 0.22%  | 0.24%  | 0.25%  | 0.25%  | 0.25%  | 0.25%  | 0.25%  |
| Maryland         | Tier II Standard       | 2.50% | 2.50% | 0.00%  | 0.00%  | 0.00%  | 0.00%  | 0.00%  | 0.00%  | 0.00%  | 0.00%  | 0.00%  | 0.00%  |
| Maryland         | Off Shore Wind         |       |       | 1.37%  | 1.36%  | 2.03%  | 2.01%  | 2.01%  | 1.99%  | 1.98%  | 1.96%  | 1.96%  | 1.94%  |
| New Jersey       | Class II Standard      | 2.50% | 2.50% | 2.50%  | 2.50%  | 2.50%  | 2.50%  | 2.50%  | 2.50%  | 2.50%  | 2.50%  | 2.50%  | 2.50%  |
| North Carolina   | Swine Waste            | 0.14% | 0.14% | 0.14%  | 0.20%  | 0.20%  | 0.20%  | 0.20%  | 0.20%  | 0.20%  | 0.20%  | 0.20%  | 0.20%  |
| North Carolina   | Poultry Waste (in GWh) | 900   | 900   | 900    | 900    | 900    | 900    | 900    | 900    | 900    | 900    | 900    | 900    |
| Pennsylvania     | Tier II Standard       | 8.20% | 8.20% | 10.00% | 10.00% | 10.00% | 10.00% | 10.00% | 10.00% | 10.00% | 10.00% | 10.00% | 10.00% |
| Washington, D.C. | Tier II Standard       | 0.50% | 0.00% | 0.00%  | 0.00%  | 0.00%  | 0.00%  | 0.00%  | 0.00%  | 0.00%  | 0.00%  | 0.00%  | 0.00%  |

Figure 8-5 shows the number of Tier II RECs eligible monthly by state for January 1, 2005, through December 31, 2019. 106 The figure includes Tier II or the equivalent REC type available in each state. Washington, DC, Maryland, and Pennsylvania classify these RECs as Tier II and New Jersey classifies the RECs as Class II.

<sup>105</sup> Public Service Commission of Maryland, Offshore Wind Projects, Order No. 88192 (May 11, 2017) at 8, Table 2, <a href="https://www.psc.state.md.us/wp-content/uploads/Order-No.-88192-Case-No.-9431-Offshore-No.-88192">https://www.psc.state.md.us/wp-content/uploads/Order-No.-88192-Case-No.-9431-Offshore-No.-88192</a>

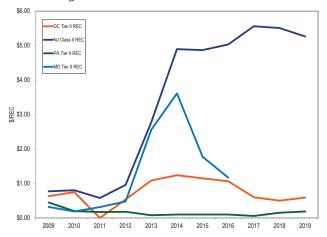

<sup>106</sup> Tier II REC volume obtained through PJM Environmental Information Services <a href="https://www.pjm-eis.com/reports-and-events/public-reports.aspx">https://www.pjm-eis.com/reports-and-events/public-reports.aspx</a> (Accessed January 23, 2020).

Figure 8-5 Number of Tier II RECs eligible monthly by state: 2005 through 2019



Tier II prices are lower than SREC and Tier I REC prices. Figure 8-6 shows the average Tier II REC price by jurisdiction for January 1, 2009 through December 31, 2019. Pennsylvania had the lowest average Tier II REC prices at \$0.19 per REC while New Jersey had the highest average Tier II REC prices at \$5.26 per REC.107

Figure 8-6 Average Tier II REC price by jurisdiction: 2009 through 2019



Some PJM jurisdictions have specific solar resource RPS requirements. These solar requirements are included in the total requirements shown in Table 8-8 but must be met by solar RECs (SRECs) only. Table 8-11 shows the percent of retail electric load that must be served by solar energy resources under each PJM jurisdiction's RPS by year. Delaware, Illinois, Maryland, New Jersey, North Carolina, Ohio, Pennsylvania, and Washington, DC have requirements for the proportion of load to be served by solar. Pennsylvania and Delaware allow only solar photovoltaic resources to fulfill their solar requirements. Solar thermal units like solar hot water heaters that do not generate electricity are considered Tier II. Indiana, Kentucky, Michigan, Tennessee, Virginia, and West Virginia have no specific solar standards. The New Jersey legislature in May 2018 increased the solar standard from 3.2 percent to 4.3 percent for 2018, 5.1 percent for 2020 through 2022 and decreases to 1.1 percent for 2032.108 Maryland legislation in 2019 increased the solar carve out percentages from 2.5 percent to 14.5 percent in 2030. Ohio HB 6 removed the solar carve out from the Ohio RPS. 109

<sup>107</sup> Tier II REC price information obtained through Evomarkets <a href="http://www.evomarkets.com">http://www.evomarkets.com</a> (Accessed January 24, 2020). There were not any reported cleared purchases for January 1, through December 31, 2019, for MD Tier II RECs.

<sup>108 &</sup>quot;Assembly, No. 3723" State of New Jersey, 218th Legislature (March 22, 2018), <a href="http://www.njleg.">http://www.njleg.</a> state.ni.us/2018/Bills/A4000/3723 11.PDF>

<sup>109</sup> Ohio Legislature House, 133rd Assembly, Bill 6, "Ohio Clean Air Program" effective Date October

Table 8-11 Solar renewable standards by percent of electric load for PJM jurisdictions: 2019 to 2030

| Jurisdiction with RPS                | 2019                            | 2020       | 2021        | 2022  | 2023  | 2024   | 2025   | 2026   | 2027   | 2028   | 2029   | 2030   |
|--------------------------------------|---------------------------------|------------|-------------|-------|-------|--------|--------|--------|--------|--------|--------|--------|
| Delaware                             | 2.00%                           | 2.25%      | 2.50%       | 2.75% | 3.00% | 3.25%  | 3.50%  | 3.50%  | 3.50%  | 3.50%  | 3.50%  | 3.50%  |
| Illinois                             | 0.87%                           | 0.96%      | 1.05%       | 1.14% | 1.23% | 1.32%  | 1.41%  | 1.50%  | 1.50%  | 1.50%  | 1.50%  | 1.50%  |
| Maryland                             | 5.50%                           | 6.00%      | 7.50%       | 8.50% | 9.50% | 10.50% | 11.50% | 12.50% | 13.50% | 14.50% | 14.50% | 14.50% |
| Michigan                             | No Mir                          | nimum Sola | ar Requiren | nent  |       |        |        |        |        |        |        |        |
| New Jersey                           | 4.90%                           | 5.10%      | 5.10%       | 5.10% | 4.90% | 4.80%  | 4.50%  | 4.35%  | 3.74%  | 3.07%  | 2.21%  | 1.58%  |
| North Carolina                       | 0.20%                           | 0.20%      | 0.20%       | 0.20% | 0.20% | 0.20%  | 0.20%  | 0.20%  | 0.20%  | 0.20%  | 0.20%  | 0.20%  |
| Ohio                                 | 0.22%                           | 0.00%      | 0.00%       | 0.00% | 0.00% | 0.00%  | 0.00%  | 0.00%  | 0.00%  | 0.00%  | 0.00%  | 0.00%  |
| Pennsylvania                         | 0.39%                           | 0.44%      | 0.50%       | 0.50% | 0.50% | 0.50%  | 0.50%  | 0.50%  | 0.50%  | 0.50%  | 0.50%  | 0.50%  |
| Washington, D.C.                     | 1.85%                           | 2.18%      | 2.50%       | 2.60% | 2.85% | 3.15%  | 3.45%  | 3.75%  | 4.10%  | 4.50%  | 4.75%  | 5.00%  |
| Jurisdiction with Voluntary Standard |                                 |            |             |       |       |        |        |        |        |        |        |        |
| Indiana                              | No Mir                          | nimum Sola | ar Requiren | nent  |       |        |        |        |        |        |        |        |
| Virginia                             | No Mir                          | nimum Sola | ar Requiren | nent  |       |        |        |        |        |        |        |        |
| Jurisdiction with No Standard        |                                 |            |             |       |       |        |        |        |        |        |        |        |
| Kentucky                             | No Renewable Portfolio Standard |            |             |       |       |        |        |        |        |        |        |        |
| Tennessee                            | No Renewable Portfolio Standard |            |             |       |       |        |        |        |        |        |        |        |
| West Virginia                        | No Ren                          | ewable Por | tfolio Stan | ıdard |       |        |        |        |        |        |        |        |

Figure 8-7 shows the number of SRECs eligible monthly by state for January 1, 2005, through December 31, 2019.110 111

Figure 8-7 Number of SRECs eligible monthly by state: 2005 through 2019

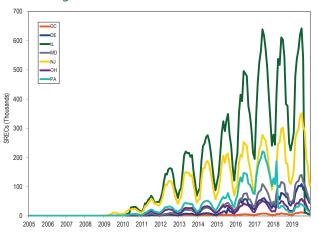



Figure 8-8 shows the average solar REC (SREC) price by jurisdiction for January 1, 2009, through December 31, 2019. The average NJ SREC prices dropped from \$673 per SREC in 2009 to \$196 per SREC in 2019. The limited supply of solar facilities in Washington, DC compared to the RPS requirement resulted in higher SREC prices. The average Washington, DC SREC price increased from \$197 per SREC in 2011 to \$395 per SREC in 2019.112

Figure 8-8 Average SREC price by jurisdiction: January 2009 through December 2019

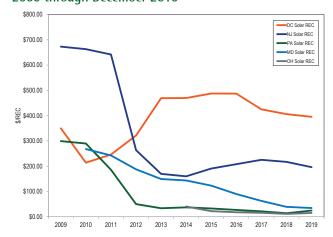



Figure 8-9 and Table 8-12 shows where the SRECs originated that are used to satisfy the states' solar requirement by retiring RECs for 2016 and 2017.113 Depending on the state, the solar RPS requirement can be fulfilled by in state or out of state SRECs. The SRECs purchased in some states are imported from other PJM states and from non PJM states. Table 8-12 shows the percent of imported and local SRECs used to meet the RPS requirements. For example, Washington, DC met its solar requirement using 50.2 percent imported SRECs for the 2016 compliance year.

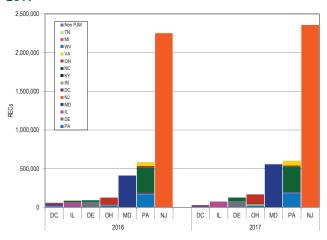
<sup>110</sup> SREC volume obtained through PJM Environmental Information Services <a href="https://www.pjm-eis.">https://www.pjm-eis.</a> com/reports-and-events/public-reports.aspx> (Accessed January 24, 2020).

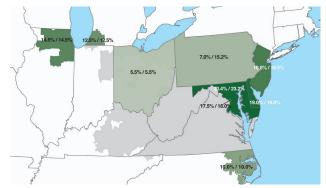
<sup>111</sup> The decrease is IL SREC is due to a change in the IL RPS requirement. <a href="https://www.illinoissolar.">https://www.illinoissolar.</a> org/resources/Documents/E-5%2017-0838%20Final%200rder.pdf>

<sup>112</sup> Solar REC average price information obtained through Evomarkets, <a href="http://www.evomarkets">http://www.evomarkets</a>.

<sup>113</sup> Retired REC information obtained through PJM GATS <a href="https://gats.pjm-eis.com/gats2/">https://gats.pjm-eis.com/gats2/</a> olicReports/RPSRetiredCertificatesReportingYear> (Accessed January 24, 2020)

Figure 8-9 State fulfillment of Solar RPS: 2016 and 2017





Table 8-12 State fulfillment of Solar RPS: 2016 and 2017

|      |                                  | State SREC | Import SREC |
|------|----------------------------------|------------|-------------|
| 2016 | DC Solar                         | 49.8%      | 50.2%       |
|      | IL Solar Renewable               | 56.5%      | 43.5%       |
|      | DE Solar Eligible                | 76.5%      | 23.5%       |
|      | OH Solar Renewable Energy Source | 73.3%      | 26.7%       |
|      | MD Solar                         | 100.0%     | 0.0%        |
|      | PA Solar                         | 29.1%      | 70.9%       |
|      | NJ Solar                         | 100.0%     | 0.0%        |
|      |                                  |            |             |
| 2017 | DC Solar                         | 17.2%      | 82.8%       |
|      | IL Solar Renewable               | 87.6%      | 12.4%       |
|      | DE Solar Eligible                | 61.9%      | 38.1%       |
|      | OH Solar Renewable Energy Source | 69.0%      | 31.0%       |
|      | MD Solar                         | 100.0%     | 0.0%        |
|      | PA Solar                         | 30.6%      | 69.4%       |
|      | NJ Solar                         | 100.0%     | 0.0%        |

Figure 8-10 shows the percent of retail electric load that must be served by Tier I resources and Tier 2 resources in each PJM jurisdiction with a mandatory RPS. For each state in Figure 8-10, the first number represents the RPS percent for Tier I or renewable energy resources; the second number represents the RPS percent for all eligible technologies which includes both renewable and alternative energy resources. States with higher percent requirements for renewable energy resources are shaded darker. Jurisdictions with no standards or with only voluntary RPS are shaded gray. Pennsylvania's RPS illustrates the need to differentiate between percent requirements for renewable and alternative energy resources. The Pennsylvania RPS identifies solar photovoltaic, solar thermal, wind, geothermal, biomass, and low-impact hydropower as Tier I resources. The Pennsylvania RPS identifies waste coal, demand side management, large-scale hydropower, integrated

gasification combined cycle, clean coal and municipal solid waste as eligible Tier II resources. As a result, the 15.2 percent number in Figure 8-10 overstates the percent of retail electric load in Pennsylvania that must be served by renewable energy resources. The 7.0 percent number in Figure 8-10 is a more accurate measure of the percent of retail electric load in Pennsylvania that must be served by renewable energy resources.

Figure 8-10 Map of retail electric load shares under RPS Renewable / Alternative Energy resources: 2019<sup>114</sup>



Under the existing state renewable portfolio standards, approximately 10.3 percent of PJM load must be served by Tier I and Tier II renewable and alternative energy resources in 2019. In 2019, 7.0 percent of PJM generation was renewable and alternative energy resources, including carbon producing and non carbon producing Tier I and Tier II generation as shown in Table 8-13. If the proportion of load among states remains constant, 17.5 percent of PJM load must be served by Tier I and Tier II renewable and alternative energy resources in 2029 under currently defined RPS rules. Approximately 8.2 percent of PJM load must be served by Tier I or renewable energy resources in 2019. In 2019, 4.9 percent of PJM generation was Tier I or renewable energy, which is 3.3 percentage points less than the amount required, as shown in Table 8-13. The current REC production from PJM generation resources was not enough to meet the 2019 state renewable requirements. LSEs use RECs from generators registered in GATS to fulfill state RPS standards. Not all generators registered in GATS are PJM resources. For example, there are 2,185.4 MW of installed capacity of solar that are PJM resources (Table 8-14), and 6,077.5 MW of installed capacity of solar that

<sup>114</sup> The standards in this chart include the Tier I standards used by some states in the PJM footprint, as well as the total alternative energy standard for states that do not classify eligible

are not PJM resources (Table 8-15). The installed solar MW that are not PJM generation consist of rooftop solar and other small projects that do not participate in the wholesale energy markets. If the installed capacity not part of PJM had the same output per ICAP MW, approximately 6.6 percent of generation would be Tier I, compared to 4.9 percent with just PJM resources, which is 1.6 percentage points less than the expected amount required. RECs typically have a lifespan of five years. This allows unused RECs in one year to be used for future RPS goals. Once an LSE retires a REC to meet a state renewable requirement, that REC is no longer eligible for trading or use elsewhere. LSEs that are unable to meet the RPS with only RECs may use alternative compliance payments for unmet goals based on each state's requirements. If the proportion of load among states remains constant, 15.3 percent of PJM load must be served by Tier I or renewable energy resources in 2029 under defined RPS rules.

In jurisdictions with an RPS, load serving entities must either generate power from eligible technologies identified in each jurisdiction's RPS or purchase RECs from resources classified as eligible technologies. Table 8-13 shows generation by jurisdiction and resource type for 2019. Wind output was 24,055.1 GWh of 39,980.4 Tier I GWh, or 60.2 percent, in the PJM footprint. As shown in Table 8-13, 57,141.2 GWh were generated by Tier I and Tier II resources, of which Tier I resources were 70.0 percent. Total wind and solar generation (noncarbon producing) was 3.3 percent of total generation in PJM for 2019. Tier I generation was 4.9 percent of total generation in PJM and Tier II was 2.1 percent of total generation in PJM for 2019. Landfill gas, solid waste and waste coal (carbon producing) were 13,693.8 GWh, or 24.0 percent of the total Tier I and Tier II.

Table 8-13 Tier I and Tier II generation by jurisdiction and renewable resource type (GWh): 2019

|                                 |          |             | Tier I  |          |            |               | Tier II |         |            |              |
|---------------------------------|----------|-------------|---------|----------|------------|---------------|---------|---------|------------|--------------|
|                                 | Landfill | Run-of-     |         |          | Total Tier | Pumped-       | Solid   | Waste   | Total Tier | Total Credit |
| Jurisdiction                    | Gas      | River Hydro | Solar   | Wind     | I Credit   | Storage Hydro | Waste   | Coal    | II Credit  | GWh          |
| Delaware                        | 39.5     | 0.0         | 0.0     | 0.0      | 39.5       | 0.0           | 0.0     | 0.0     | 0.0        | 39.5         |
| Illinois                        | 122.3    | 0.0         | 13.4    | 10,643.9 | 10,779.6   | 0.0           | 0.0     | 0.0     | 0.0        | 10,779.6     |
| Indiana                         | 20.8     | 48.5        | 13.3    | 5,537.0  | 5,619.6    | 0.0           | 0.0     | 0.0     | 0.0        | 5,619.6      |
| Kentucky                        | 0.0      | 370.3       | 0.0     | 0.0      | 370.3      | 0.0           | 0.0     | 0.0     | 0.0        | 370.3        |
| Maryland                        | 62.2     | 0.0         | 443.2   | 676.1    | 1,181.4    | 0.0           | 604.4   | 0.0     | 604.4      | 1,785.8      |
| Michigan                        | 22.0     | 66.2        | 6.1     | 0.0      | 94.4       | 0.0           | 0.0     | 0.0     | 0.0        | 94.4         |
| New Jersey                      | 245.6    | 26.7        | 694.2   | 14.6     | 981.0      | 239.1         | 1,333.4 | 0.0     | 1,572.4    | 2,553.4      |
| North Carolina                  | 0.0      | 672.8       | 858.3   | 521.9    | 2,053.0    | 0.0           | 0.0     | 0.0     | 0.0        | 2,053.0      |
| Ohio                            | 340.6    | 878.8       | 1.3     | 1,944.1  | 3,164.8    | 0.0           | 0.0     | 0.0     | 0.0        | 3,164.8      |
| Pennsylvania                    | 722.2    | 5,475.6     | 25.0    | 3,237.3  | 9,460.1    | 1,749.8       | 1,283.3 | 5,270.1 | 8,303.2    | 17,763.3     |
| Tennessee                       | 0.0      | 1,460.3     | 0.0     | 0.0      | 1,460.3    | 0.0           | 0.0     | 0.0     | 0.0        | 1,460.3      |
| Virginia                        | 538.1    | 1,214.8     | 640.3   | 0.0      | 2,393.1    | 3,632.4       | 922.1   | 1,185.1 | 5,739.5    | 8,132.7      |
| Washington, DC                  | 0.0      | 0.0         | 0.0     | 0.0      | 0.0        | 0.0           | 0.0     | 0.0     | 0.0        | 0.0          |
| West Virginia                   | 41.0     | 862.2       | 0.0     | 1,480.1  | 2,383.2    | 0.0           | 0.0     | 941.3   | 941.3      | 3,324.6      |
| Total                           | 2,154.3  | 11,076.0    | 2,695.1 | 24,055.1 | 39,980.4   | 5,621.2       | 4,143.1 | 7,396.5 | 17,160.8   | 57,141.2     |
| Percent of Renewable Generation | 3.8%     | 19.4%       | 4.7%    | 42.1%    | 70.0%      | 9.8%          | 7.3%    | 12.9%   | 30.0%      | 100.0%       |
| Percent of Total Generation     | 0.3%     | 1.4%        | 0.3%    | 2.9%     | 4.9%       | 0.7%          | 0.5%    | 0.9%    | 2.1%       | 7.0%         |

Figure 8-11 shows the average hourly output by fuel type for January 1 through December 31 of 2014 through 2019. Tier I includes landfill gas, run of river hydro, solar and wind resources, as defined by the relevant states. Tier II includes pumped storage, solid waste and waste coal resources, as defined by the relevant states. Other includes biomass, miscellaneous, heavy oil, light oil, coal gas, propane, diesel, distributed generation, other biogas, kerosene and batteries.115

<sup>115</sup> See the 2019 Quarterly State of the Market Report for PJM: January through June, Section 3: Energy Market, Table 3-9

Figure 8-11 Average hourly output by fuel type: 2014 through 2019

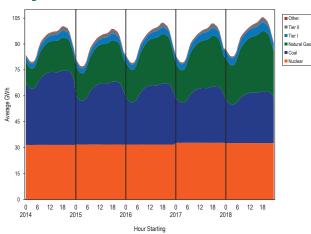



Table 8-14 shows the capacity of Tier I and Tier II resources in PJM by jurisdiction, as defined by primary fuel type. This capacity includes coal and natural gas units that qualify as Tier II because they have a renewable fuel as an alternative fuel. For example, a coal generator that can also burn waste coal to generate power could list the alternative fuel as waste coal. A REC is only generated when using the fuel listed as Tier I or Tier II. New Jersey has the largest amount of solar capacity in PJM, 563.8 MW, or 25.8 percent of the total solar capacity. New Jersey's SREC prices were the highest in PJM at \$673 per REC in 2009 and at \$194 per REC in 2019. Wind resources are located primarily in western PJM, in Illinois and Indiana, which include 5,621.6 MW, or 63.2 percent of the total wind capacity.

Table 8-15 shows renewable capacity registered in the PJM generation attribute tracking system (GATS) not all of which are PJM resources. 116 For example, roof top solar panels within the PJM footprint generate SRECs but are not PJM units. This includes solar capacity of 6,077.5 MW of which 2,370.5 MW is in New Jersey. These resources can earn renewable energy credits, and can be used to fulfill the renewable portfolio standards in PJM jurisdictions. There are 1,975.7 MW of capacity located in jurisdictions outside PJM that may qualify for specific renewable energy credits in some PJM jurisdictions. For example, there are 141.5 MW of capacity registered with GATS located in Alabama.

Table 8-14 PJM renewable capacity by jurisdiction (MW): December 31, 2019

|                  |         | Landfill | Natural |       | Pumped-       | Run-of-     |         | Solid | Waste   |         |          |
|------------------|---------|----------|---------|-------|---------------|-------------|---------|-------|---------|---------|----------|
| Jurisdiction     | Coal    | Gas      | Gas     | Oil   | Storage Hydro | River Hydro | Solar   | Waste | Coal    | Wind    | Total    |
| Delaware         | 0.0     | 8.1      | 1,797.0 | 13.0  | 0.0           | 0.0         | 0.0     | 0.0   | 0.0     | 0.0     | 1,818.1  |
| Illinois         | 0.0     | 39.2     | 360.0   | 0.0   | 0.0           | 0.0         | 9.0     | 0.0   | 0.0     | 3,599.2 | 4,007.4  |
| Indiana          | 0.0     | 8.0      | 0.0     | 0.0   | 0.0           | 8.2         | 10.1    | 0.0   | 0.0     | 2,022.5 | 2,048.8  |
| Kentucky         | 0.0     | 0.0      | 0.0     | 0.0   | 0.0           | 166.0       | 0.0     | 0.0   | 0.0     | 0.0     | 166.0    |
| Maryland         | 0.0     | 22.3     | 0.0     | 69.0  | 0.0           | 494.4       | 214.3   | 128.2 | 0.0     | 190.0   | 1,118.2  |
| Michigan         | 0.0     | 8.0      | 0.0     | 0.0   | 0.0           | 13.9        | 4.6     | 0.0   | 0.0     | 0.0     | 26.5     |
| Missouri         | 0.0     | 0.0      | 0.0     | 0.0   | 0.0           | 0.0         | 0.0     | 0.0   | 0.0     | 146.0   | 146.0    |
| New Jersey       | 0.0     | 77.7     | 0.0     | 0.0   | 453.0         | 11.0        | 563.8   | 162.0 | 0.0     | 4.5     | 1,271.9  |
| North Carolina   | 0.0     | 0.0      | 0.0     | 0.0   | 0.0           | 465.0       | 721.6   | 0.0   | 0.0     | 208.0   | 1,394.6  |
| Ohio             | 5,734.0 | 68.2     | 0.0     | 136.0 | 0.0           | 119.1       | 1.1     | 0.0   | 0.0     | 669.8   | 6,728.2  |
| Pennsylvania     | 0.0     | 201.8    | 2,346.0 | 0.0   | 1,269.0       | 893.3       | 19.5    | 261.8 | 1,494.0 | 1,367.2 | 7,852.6  |
| Tennessee        | 0.0     | 0.0      | 0.0     | 0.0   | 0.0           | 156.6       | 0.0     | 0.0   | 0.0     | 0.0     | 156.6    |
| Virginia         | 0.0     | 134.1    | 0.0     | 17.0  | 5,347.5       | 420.2       | 641.4   | 123.0 | 585.0   | 0.0     | 7,268.2  |
| Washington, D.C. | 0.0     | 0.0      | 0.0     | 0.0   | 0.0           | 0.0         | 0.0     | 0.0   | 0.0     | 0.0     | 0.0      |
| West Virginia    | 0.0     | 5.4      | 0.0     | 0.0   | 0.0           | 257.9       | 0.0     | 0.0   | 165.0   | 686.3   | 1,114.6  |
| PJM Total        | 5,734.0 | 572.7    | 4,503.0 | 235.0 | 7,069.5       | 3,005.5     | 2,185.4 | 675.0 | 2,244.0 | 8,893.4 | 35,117.4 |

<sup>116</sup> PJM Environmental Information Services (EIS), an unregulated subsidiary of PIM, operates the generation attribute tracking system (GATS), which is used by many jurisdictions to track these renewable energy credits. GATS publishes details on every renewable generator registered within the PJM footprint and aggregate emissions of renewable generation, but does not publish generation data by unit and does not make unit data available to the MMU

Table 8-15 Renewable capacity by jurisdiction, non-PJM units registered in GATS (MW): December 31, 2019<sup>117</sup>

|                  |       |               | Landfill | Natural | Other | Other  |         | Solid   |         |          |
|------------------|-------|---------------|----------|---------|-------|--------|---------|---------|---------|----------|
| Jurisdiction     | Coal  | Hydroelectric | Gas      | Gas     | Gas   | Source | Solar   | Waste   | Wind    | Total    |
| Alabama          | 0.0   | 0.0           | 0.0      | 0.0     | 0.0   | 0.0    | 0.0     | 141.5   | 0.0     | 141.5    |
| Delaware         | 0.0   | 0.0           | 2.2      | 0.0     | 0.0   | 0.0    | 119.5   | 0.0     | 2.1     | 123.8    |
| Georgia          | 0.0   | 0.0           | 27.1     | 0.0     | 0.0   | 0.0    | 152.2   | 258.9   | 0.0     | 438.2    |
| Illinois         | 0.0   | 21.4          | 93.8     | 0.0     | 5.5   | 0.0    | 178.3   | 0.0     | 300.3   | 599.4    |
| Indiana          | 0.0   | 0.0           | 49.6     | 0.0     | 5.2   | 109.6  | 118.9   | 0.0     | 180.0   | 463.3    |
| lowa             | 0.0   | 0.0           | 1.6      | 0.0     | 0.0   | 0.0    | 2.1     | 0.0     | 336.8   | 340.5    |
| Kentucky         | 600.0 | 162.2         | 18.6     | 0.0     | 0.4   | 0.0    | 37.0    | 93.0    | 0.0     | 911.2    |
| Louisiana        | 0.0   | 0.0           | 0.0      | 0.0     | 0.0   | 0.0    | 0.0     | 66.2    | 0.0     | 66.2     |
| Maryland         | 65.0  | 0.0           | 12.7     | 0.0     | 0.0   | 0.0    | 1,009.9 | 15.0    | 0.3     | 1,102.9  |
| Michigan         | 55.0  | 1.3           | 4.8      | 0.0     | 0.0   | 0.0    | 4.9     | 31.0    | 80.6    | 177.6    |
| Missouri         | 0.0   | 0.0           | 5.6      | 0.0     | 0.0   | 0.0    | 61.2    | 0.0     | 451.0   | 517.8    |
| New Jersey       | 0.0   | 0.0           | 47.9     | 0.0     | 11.6  | 0.0    | 2,370.5 | 0.0     | 4.8     | 2,434.7  |
| New York         | 0.0   | 0.0           | 0.0      | 0.0     | 0.0   | 0.0    | 0.4     | 0.0     | 0.0     | 0.4      |
| North Carolina   | 0.0   | 430.4         | 0.0      | 0.0     | 0.0   | 0.0    | 1,068.5 | 151.5   | 0.0     | 1,650.4  |
| North Dakota     | 0.0   | 0.0           | 0.0      | 0.0     | 0.0   | 0.0    | 0.0     | 0.0     | 360.0   | 360.0    |
| Ohio             | 0.0   | 6.6           | 29.7     | 52.0    | 14.2  | 32.4   | 220.2   | 92.8    | 47.4    | 495.3    |
| Pennsylvania     | 109.7 | 31.7          | 45.2     | 93.0    | 16.6  | 5.0    | 389.1   | 8.6     | 3.3     | 702.0    |
| South Carolina   | 0.0   | 0.0           | 30.8     | 0.0     | 0.0   | 0.0    | 91.3    | 0.0     | 0.0     | 122.1    |
| Tennessee        | 0.0   | 0.0           | 0.0      | 0.0     | 0.0   | 0.0    | 0.0     | 0.0     | 0.0     | 0.0      |
| Texas            | 0.0   | 0.0           | 0.0      | 0.0     | 0.0   | 0.0    | 0.0     | 57.7    | 0.0     | 57.7     |
| Virginia         | 0.0   | 28.6          | 11.3     | 0.0     | 3.1   | 0.0    | 167.1   | 287.6   | 0.0     | 497.6    |
| Washington, D.C. | 0.0   | 0.0           | 0.0      | 0.0     | 49.4  | 13.5   | 82.1    | 0.0     | 0.0     | 145.0    |
| West Virginia    | 0.0   | 0.0           | 0.0      | 0.0     | 0.0   | 0.0    | 4.2     | 0.0     | 0.0     | 4.2      |
| Wisconsin        | 0.0   | 9.0           | 0.0      | 0.0     | 0.0   | 0.0    | 0.1     | 44.6    | 0.0     | 53.7     |
| Total            | 829.7 | 691.2         | 380.9    | 145.0   | 105.9 | 160.5  | 6,077.5 | 1,248.4 | 1,766.6 | 11,405.7 |

Renewable energy credits are related to the production and purchase of wholesale power, but have not, when they constitute a transaction separate from a wholesale sale of power, been found subject to FERC regulation.<sup>118</sup> RECs markets are, as an economic fact, integrated with PJM markets including energy and capacity markets, but are not formally recognized as part of PJM markets. Revenues from RECs markets are revenues for PJM resources earned in addition to revenues earned from the sale of the same MWh in PJM markets.

Delaware, North Carolina, Michigan and Virginia allow various types of resources to earn multiple RECs per MWh, though typically one REC is equal to one MWh. For example, Delaware provided a three MWh REC for each MWh produced by in-state customer sited photovoltaic generation and fuel cells using renewable fuels that are installed on or before December 31, 2014.119 This is

In addition to GATS, there are several other REC tracking systems used by states in the PJM footprint. Illinois, Indiana and Ohio use both GATS and M-RETS, the REC tracking system for resources located in the Midcontinent ISO, to track the sales of RECs used to fulfill their RPS requirements. Michigan and North Carolina have created their own state-wide tracking systems, MIRECS and NC-RETS, through which all RECs used to satisfy these states' RPS requirements must ultimately be traded. Table 8-16 shows the REC tracking

systems used by each state within the PJM footprint. To ensure a REC is only used one time, REC tracking systems must keep an account of a REC from its creation until its retirement. A REC is considered to be retired when it has been used to satisfy an obligation associated with an RPS.

Table 8-16 REC tracking systems in PJM states with renewable portfolio standards

| Jurisdiction with RPS                | REC      | Tracking System Used | ł       |
|--------------------------------------|----------|----------------------|---------|
| Delaware                             | PJM-GATS |                      |         |
| Illinois                             | PJM-GATS | M-RETS               |         |
| Maryland                             | PJM-GATS |                      |         |
| Michigan                             |          | MIRECS               |         |
| New Jersey                           | PJM-GATS |                      |         |
| North Carolina                       |          |                      | NC-RETS |
| Ohio                                 | PJM-GATS | M-RETS               |         |
| Pennsylvania                         | PJM-GATS |                      |         |
| Washington, D.C.                     | PJM-GATS |                      |         |
| Jurisdiction with Voluntary Standard |          |                      |         |
| Indiana                              | PJM-GATS | M-RETS               |         |
| Virginia                             | PJM-GATS |                      |         |

All PJM states with renewable portfolio standards have specified geographical restrictions governing the source of RECs to satisfy states' standards. Table 8-17 describes these restrictions. Indiana, Illinois, Michigan, and Ohio all have provisions in their renewables standards that require all or a portion of RECs used to comply with each state's standards to be generated by in-state resources.

equivalent to providing a REC price equal to three times its stated value per MWh.

<sup>117</sup> See PJM - EIS (Environmental Information Services), Generation Attribute Tracking System "Renewable Generators Registered in GATS," <a href="Renewable-Generators">https://gats.pjm-eis.com/gats2/PublicReports/Rene</a> wableGeneratorsRegisteredinGATS> (Accessed January 24, 2020).

<sup>118</sup> See WSPP, Inc., 139 FERC ¶ 61,051 at P 18 (2012) ("we conclude that unbundled REC transactions fall outside of the Commission's jurisdiction under sections 201, 205 and 206 of the FPA. We further conclude that bundled REC transactions fall within the Commission's jurisdiction under sections 201, 205 and 206 of the FPA"); citing American Ref-Fuel Company, et al., 105 FERC ¶ 61,004 at PP 23–24 (2003) ("American Ref-Fuel, 105 FERC ¶ 61,004 at PP 23–24 ("RECs are created by the States. They exist outside the confines of PURPA... And the contracts for sales of QF capacity and energy, entered into pursuant to PURPA, ... do not control the ownership of RECs."); see also Williams Solar LLC and Allco Finance Limited, 156 FERC ¶ 61,042 (2016).

<sup>119</sup> See DSIRE, NC Clean Energy Technology Center. Delaware Renewable Portfolio Standard, <a href="http://">http:// .dsireusa.org/system/program/detail/1231> (Accessed November 3, 2018).

North Carolina has provisions that require RECs to be purchased from in-state resources but Dominion, the only utility located in both North Carolina and PJM, is exempt from these provisions. Pennsylvania added a provision in 2017 that requires SRECs used to comply with Pennsylvania's solar photovoltaics carve out standard to be sourced from resources located in Pennsylvania.

Pennsylvania requires that RECs used for compliance with its RPS are produced from resources located within the PJM footprint. Virginia requires that every load serving entity that chooses to participate in its voluntary renewable energy standard purchase RECs from the control area or RTO in which it is located. Delaware requires that RECs used for compliance with its RPS are produced from resources located within the PJM footprint or resources located elsewhere if these resources can demonstrate that the power they produce is directly deliverable to Delaware. The District of Columbia, Maryland and New Jersey allow RECs to be purchased from resources located within PJM in addition to large areas that adjoin PJM for compliance with their standards.

Table 8-17 Geographic restrictions on REC purchases for renewable portfolio standard compliance in PJM states

|                               | RPS Contains       |                                                                                                                      |
|-------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------|
| State with RPS                | In-state Provision | Geographical Requirements for RPS Compliance                                                                         |
| Delaware                      | No                 | RECs must be purchased from resources located either within PJM or from resources outside of PJM that are directly   |
|                               |                    | deliverable into Delaware.                                                                                           |
| Illinois                      | Yes                | All RECs must be purchased from resources located within Illinois or from resources located in adjacent states that  |
|                               |                    | meet certain public interest criteria.                                                                               |
| Maryland                      | No                 | RECs must come from within PJM, 10-30 miles offshore the coast of Maryland or from a control area adjacent to        |
|                               |                    | PJM that is capable of delivering power into PJM.                                                                    |
| Michigan                      | Yes                | RECs must either come from resources located within Michigan or anywhere in the service territory of retail electric |
|                               |                    | provider in Michigan that is not an alternative electric supplier. There are many exceptions to these requirements   |
|                               |                    | (see Michigan S.B. 213).                                                                                             |
| New Jersey                    | No                 | RECs must either be purchased from resources located within PJM or from resources located outside of PJM for         |
|                               |                    | which the energy associated with the REC is delivered to PJM via dynamic scheduling.                                 |
| North Carolina                | Yes                | Dominion, the only utility located in both the state of North Carolina and PJM, may purchase RECs from anywhere.     |
|                               |                    | Other utilities in North Carolina not located in PJM are subject to different REC requirements (see G.S. 62-113.8).  |
| Ohio                          | Yes                | All RECs must be generated from resources that are located in the state of Ohio or have the capability to deliver    |
|                               |                    | power directly into Ohio. Any renewable facility located in a state contiguous to Ohio has been deemed deliverable   |
|                               |                    | into the state of Ohio. For renewable resources in noncontiguous states, deliverabilty must be demonstarted to the   |
|                               |                    | Public Utilities Commission of Ohio.                                                                                 |
| Pennsylvania                  | Yes                | RECs must be purchased from resources located within PJM. All SRECs used for compliance with the Solar PV            |
|                               |                    | standard must source from solar PV resources within the state of Pennsylvania.                                       |
| Washington, D.C.              | No                 | RECs must be purchased from either a PJM state or a state adjacent with PJM. A PJM state is defined as any state     |
|                               |                    | with a portion of their geographical boundary within the footprint of PJM. An adjacent state is defined as a state   |
|                               |                    | that lies next to a PJM state, i.e. SC, GA, AL, AR, IA, NY, MO, MS, and WI.                                          |
| State with Voluntary Standard |                    |                                                                                                                      |
| Indiana                       | Yes                | At least 50 percent of RECs must be purchased from resources located within Indiana.                                 |
| Virginia                      | No                 | RECs must be purchased from the RTO or control area in which the participating utility is a member.                  |

## **Carbon Pricing**

Table 8-18 shows the impact of a range of carbon prices on the cost per MWh of producing energy from three basic unit types. <sup>120</sup> For example, if the price of carbon were \$50.00 per tonne, the short run marginal costs would increase by \$24.52 per MWh for a new combustion turbine (CT) unit, \$16.71 per MWh for a new combined cycle (CC) unit and \$43.15 per MWh for a new coal plant (CP).

Table 8-18 Carbon price per MWh by unit type

|      | Carbon Price per MWh |            |            |            |             |             |             |  |  |  |  |
|------|----------------------|------------|------------|------------|-------------|-------------|-------------|--|--|--|--|
| Unit | Carbon               | Carbon     | Carbon     | Carbon     | Carbon      | Carbon      | Carbon      |  |  |  |  |
| Type | \$5/tonne            | \$10/tonne | \$15/tonne | \$50/tonne | \$100/tonne | \$200/tonne | \$400/tonne |  |  |  |  |
| CT   | \$2.45               | \$4.90     | \$7.36     | \$24.52    | \$49.04     | \$98.08     | \$196.17    |  |  |  |  |
| CC   | \$1.67               | \$3.34     | \$5.01     | \$16.71    | \$33.41     | \$66.83     | \$133.65    |  |  |  |  |
| CP   | \$4.32               | \$8.63     | \$12.95    | \$43.15    | \$86.30     | \$172.60    | \$345.21    |  |  |  |  |

<sup>120</sup> Heat rates from: 2019 State of the Market Report for PJM, Volume 2, Section 7: Net Revenue, Table 7-4.

<sup>121</sup> Carbon emissions rates from: Table A.3. Carbon Dioxide Uncontrolled Emission Factors, Energy Information Administration, <a href="https://www.eia.gov/electricity/annual/html/epa\_a\_03.html">https://www.eia.gov/electricity/annual/html/epa\_a\_03.html</a> (Accessed March 9, 2020).

Table 8-18 also illustrates the effective cost of carbon included in the price of a REC or SREC. For example, the average price of an SREC in New Jersey was \$196.23 per MWh in 2019. The SREC price is paid in addition to the energy price paid at the time the solar energy is produced. If the MWh produced by the solar resource resulted in avoiding the production of a MWh from a CT, the value of carbon reduction implied by the SREC price is a carbon price of approximately \$400 per tonne. This result also assumes that the entire value of the SREC was based on reduced carbon emissions. The SREC price consistent with a carbon price of \$50.00 per tonne, assuming that a MWh from a CT is avoided, is \$24.52 per MWh.

Applying this method to tier I and class I REC and SREC price histories yields the implied carbon prices in Table 8-19. The carbon price implied by the 2019 average REC price in Washington, DC is \$5.63 per tonne which is consistent with the 2019 RGGI average clearing price of \$5.98 per tonne. All other carbon prices implied by renewable RECs are well above the RGGI clearing price, and well below the social cost of carbon which is estimated to be in the range of \$50 per tonne. 122 The carbon prices implied by SREC prices have no apparent relationship to carbon prices implied by the REC clearing prices. The carbon price implied by the Pennsylvania SREC price is consistent with the social cost of carbon but the Pennsylvania SREC implied carbon price is three times greater than the carbon price implied by Pennsylvania RECs. The carbon prices implied by the SREC prices in the other jurisdictions are more than four times the corresponding carbon prices implied by REC prices.

Table 8-19 Implied carbon price based on REC and SREC prices: 2009 through 2019<sup>123</sup>

|                                         | -                                              |            |            | -             |            | _           |                   |          |          |          |          |
|-----------------------------------------|------------------------------------------------|------------|------------|---------------|------------|-------------|-------------------|----------|----------|----------|----------|
|                                         | 2009                                           | 2010       | 2011       | 2012          | 2013       | 2014        | 2015              | 2016     | 2017     | 2018     | 2019     |
| Jurisdiction with Tier I or Class I REC |                                                |            | Carbo      | n Price (\$   | per tonne) | Implied by  | <b>REC Prices</b> |          |          |          |          |
| Delaware                                |                                                |            |            |               | \$34.15    | \$35.17     | \$31.91           | \$32.91  | \$10.26  | \$10.62  | \$14.00  |
| Maryland                                | \$2.07                                         | \$1.92     | \$3.06     | \$6.34        | \$17.46    | \$28.45     | \$29.18           | \$26.09  | \$23.12  | \$21.51  | \$17.55  |
| New Jersey                              | \$13.34                                        | \$17.74    | \$8.58     | \$4.74        | \$13.09    | \$21.04     | \$25.29           | \$26.93  | \$24.01  | \$22.27  | \$19.21  |
| Ohio                                    |                                                |            |            |               |            | \$10.16     | \$8.52            | \$5.29   | \$6.27   | \$10.02  | \$11.77  |
| Pennsylvania                            | \$6.82                                         | \$8.13     | \$3.33     | \$4.29        | \$15.87    | \$26.66     | \$28.88           | \$26.35  | \$23.35  | \$21.70  | \$17.72  |
| Washington, D.C.                        |                                                |            |            |               |            |             | \$3.19            | \$4.04   | \$4.88   | \$4.73   | \$5.63   |
| Jurisdiction with Solar REC             |                                                |            | Carbon     | Price (\$ per | tonne) lm  | plied by So | lar REC Pric      | es       |          |          |          |
| Delaware                                |                                                |            |            |               |            | \$117.25    | \$85.40           | \$86.48  | \$35.70  | \$17.33  |          |
| Maryland                                |                                                | \$546.11   | \$494.54   | \$382.57      | \$304.54   | \$292.70    | \$251.23          | \$183.09 | \$127.67 | \$79.71  | \$70.57  |
| New Jersey                              | \$1,372.37                                     | \$1,352.15 | \$1,309.00 | \$537.08      | \$345.94   | \$326.21    | \$388.73          | \$424.21 | \$459.21 | \$442.43 | \$400.12 |
| Ohio                                    |                                                |            |            |               |            | \$82.32     | \$45.12           | \$36.15  | \$31.82  |          |          |
| Pennsylvania                            | \$610.05                                       | \$590.57   | \$378.67   | \$101.80      | \$68.34    | \$75.90     | \$66.89           | \$55.06  | \$43.84  | \$28.24  | \$50.23  |
| Washington, D.C.                        | \$712.98                                       | \$436.28   | \$501.62   | \$655.52      | \$956.55   | \$957.46    | \$994.05          | \$993.49 | \$866.17 | \$827.81 | \$806.35 |
| Regional Greenhouse Gas Initiative      | CO <sub>2</sub> Allowance Price (\$ per tonne) |            |            |               |            |             |                   |          |          |          |          |
| RGGI clearing price                     | \$3.06                                         | \$2.12     | \$2.08     | \$2.13        | \$3.22     | \$5.21      | \$6.72            | \$4.93   | \$3.77   | \$4.86   | \$5.98   |

# Alternative Compliance Payments

PJM jurisdictions have various methods for enforcing compliance with required renewable portfolio standards. If a retail supplier is unable to comply with the renewable portfolio standards required by the jurisdiction, suppliers may make alternative compliance payments (ACPs), with varying standards, to cover any shortfall between the RECs required by the state and those the retail supplier actually purchased. The ACPs, which are penalties, function as a cap on the market value of RECs. In New Jersey, solar ACPs are currently \$258.00 per MWh.<sup>124</sup> Pennsylvania requires that solar ACPs be 200 percent of the average credit price of Pennsylvania solar RECs sold during the reporting year plus the value of any solar rebates which was \$63.16 per MWh for 2019. Figure 8-12 shows the historical relationship between SREC prices and ACP levels. The SREC price is represented by a solid line in the figure and the corresponding ACP level is represented by a dashed line. For each jurisdiction, the ACP is an upper bound for the price level. In Michigan and North Carolina, there are no defined values for ACPs. The public utility commissions in Michigan and North Carolina have discretionary power to assess what a load serving entity must pay for any RPS shortfalls.

<sup>122 &</sup>quot;Technical Update of the Social Cost of Carbon for Regulatory Impact Analysis - Under Executive Order 12899," Interagency Working Group on the Social Cost of Greenhouse Gases, United States Government, (Aug. 2016), <a href="https://19january2017snapshot.epa.gov/sites/production/files/2016-12/documents/sc\_co2\_tsd\_august\_2016.pdf">https://19january2017snapshot.epa.gov/sites/production/files/2016-12/documents/sc\_co2\_tsd\_august\_2016.pdf</a>

<sup>123</sup> There were no trades in 2018 and 2019 for Ohio SRECs available in the Evomarkets data.

<sup>124</sup> N.J. S. 2314/A. 3723.

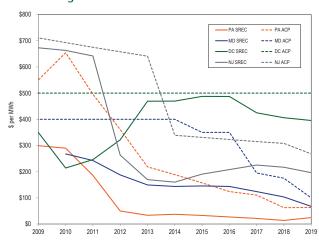

Table 8-20 shows the alternative compliance standards for RPS in PJM jurisdictions.

Table 8–20 Tier I, Tier II, and Solar alternative compliance payments in PJM jurisdictions: December 31, 2019<sup>125</sup> 126

|                                      | Standard Alternative                                                  | Tier II Alternative | Solar Alternative   |  |  |  |  |
|--------------------------------------|-----------------------------------------------------------------------|---------------------|---------------------|--|--|--|--|
| Jurisdiction with RPS                | Compliance (\$/MWh)                                                   | Compliance (\$/MWh) | Compliance (\$/MWh) |  |  |  |  |
| Delaware                             | \$25.00                                                               |                     | \$400.00            |  |  |  |  |
| Illinois                             | \$0.35                                                                |                     |                     |  |  |  |  |
| Maryland                             | \$30.00                                                               | \$15.00             | \$100.00            |  |  |  |  |
| Michigan                             | No specific penalties                                                 |                     |                     |  |  |  |  |
| New Jersey                           | \$50.00                                                               | \$50.00             | \$258.00            |  |  |  |  |
| North Carolina                       | No specific penalties: At the discretion of the NC Utility Commission |                     |                     |  |  |  |  |
| Ohio                                 | \$52.62                                                               |                     | \$200.00            |  |  |  |  |
| Pennsylvania                         | \$45.00                                                               | \$45.00             | \$63.16             |  |  |  |  |
| Washington, D.C.                     | \$50.00                                                               | \$10.00             | \$500.00            |  |  |  |  |
| Jurisdiction with Voluntary Standard |                                                                       |                     |                     |  |  |  |  |
| Indiana                              | Voluntary standa                                                      | rd - No Penalties   |                     |  |  |  |  |
| Virginia                             | Voluntary standa                                                      | rd - No Penalties   |                     |  |  |  |  |
| Jurisdiction with No Standard        |                                                                       |                     |                     |  |  |  |  |
| Kentucky                             | No standard                                                           | •                   | •                   |  |  |  |  |
| Tennessee                            | No standard                                                           |                     |                     |  |  |  |  |
| West Virginia                        | No standard                                                           |                     |                     |  |  |  |  |

Load serving entities participating in mandatory RPS programs in PJM jurisdictions must submit compliance reports to the relevant jurisdiction's public utility commission.

Figure 8-12 Comparison of SREC Price and Solar ACP: 2009 through 2019



In their submitted compliance reports, load serving entities must indicate the quantity of MWh that they with RPS provisions requiring that they purchase RECs. The public utility commissions then release RPS compliance reports to the public.

The Pennsylvania Public Utility Commission issued their 2018 compliance report for the Pennsylvania Alternative Energy Standards Act of 2004 during the fourth quarter of 2019. Pennsylvania reported that the 481,963 SRECs, 9,301,679 Tier I RECs and 11,623,329 Tier II RECs were retired during the 2018

reporting year (June 1, 2017 through May 31, 2018). Supplier obligations for 10 SRECs, 211 Tier I RECs and 232 Tier II RECs were resolved through ACPs.

The Public Service Commission of the District of Columbia reported that 67,892 SRECs, 1,684,797 Tier I RECs and 112,484 Tier II RECs were retired during the 2018 compliance year. ACPs decreased from \$26,571,010 for 2017 to \$18,744,020 for 2018.<sup>128</sup>

The Public Service Commission of Maryland reported that 857,232 SRECs, 8,627,737 Tier 1 RECs and 1,599,819 Tier 2 RECs were retired in 2018. ACPs totaled \$67,796 for 2018 with the majority of payments made in lieu of purchasing Tier 1 RECs to satisfy Industrial Load Process (IPL) obligations.

The Public Utilities Commission of Ohio reported that 5,373,438 nonsolar RECs were retired in the 2018 compliance year, exceeding the REC obligation of 5,372,094 RECs; and 224,593 SRECs were retired in the

have generated using eligible renewable or alternative energy resources. They must also identify the quantity of RECs they may have purchased to make up for renewable energy generation shortfalls or to comply

<sup>125</sup> The Ohio standard alternative compliance payment (ACP) is updated annually <a href="https://www.puco.ohio.gov/industry-information/industry-topics/acp-non-solar-alternative-compliance-payment-under-ore-492864">https://www.puco.ohio.gov/industry-information/industry-topics/acp-non-solar-alternative-compliance-payment-under-ore-492864</a>>. The Illinois Commerce Commission periodically publishes updates to the effective ACP amount <a href="https://www.icc.illinois.gov/electricity/RPSCompliancePaymentNotices.aspx>">https://www.icc.illinois.gov/electricity/RPSCompliancePaymentNotices.aspx>">https://www.icc.illinois.gov/electricity/RPSCompliancePaymentNotices.aspx>">https://www.icc.illinois.gov/electricity/RPSCompliancePaymentNotices.aspx>">https://www.icc.illinois.gov/electricity/RPSCompliancePaymentNotices.aspx>">https://www.icc.illinois.gov/electricity/RPSCompliancePaymentNotices.aspx>">https://www.icc.illinois.gov/electricity/RPSCompliancePaymentNotices.aspx>">https://www.icc.illinois.gov/electricity/RPSCompliancePaymentNotices.aspx>">https://www.icc.illinois.gov/electricity/RPSCompliancePaymentNotices.aspx>">https://www.icc.illinois.gov/electricity/RPSCompliancePaymentNotices.aspx>">https://www.icc.illinois.gov/electricity/RPSCompliancePaymentNotices.aspx>">https://www.icc.illinois.gov/electricity/RPSCompliancePaymentNotices.aspx>">https://www.icc.illinois.gov/electricity/RPSCompliancePaymentNotices.aspx>">https://www.icc.illinois.gov/electricity/RPSCompliancePaymentNotices.aspx>">https://www.icc.illinois.gov/electricity/RPSCompliancePaymentNotices.aspx>">https://www.icc.illinois.gov/electricity/RPSCompliancePaymentNotices.aspx>">https://www.icc.illinois.gov/electricity/RPSCompliancePaymentNotices.aspx>">https://www.icc.illinois.gov/electricity/RPSCompliancePaymentNotices.aspx>">https://www.icc.illinois.gov/electricity/RPSCompliancePaymentNotices.aspx>">https://www.icc.illinois.gov/electricity/RPSCompliancePaymentNotices.aspx>">https://www.icc.illinois.aspx</a>px</a>

<sup>126</sup> The entry for Pennsylvania reflects the solar ACP for the compliance year ending May 31, 2018. See "Pricing," <a href="https://www.pennaeps.com/reports/">https://www.pennaeps.com/reports/</a> (Accessed July 16, 2019).

<sup>127 &</sup>quot;Alternative Energy Portfolio Standards Act of 2004 Compliance for Reporting Year 2019," (December 2019), <a href="http://www.pennaeps.com/reports/">http://www.pennaeps.com/reports/</a>>.

<sup>128 &</sup>quot;Report on the Renewable Energy Portfolio Standard for Compliance Year 2018," Public Service Commission of the District of Columbia (May 1, 2019), <a href="https://www.dcpsc.org/Utility-Information/Electric/Renewable-Energy-Portfolio-Standard-Program.aspx-">https://www.dcpsc.org/Utility-Information/Electric/Renewable-Energy-Portfolio-Standard-Program.aspx-</a>

<sup>129 &</sup>quot;Renewable Energy Portfolio Standard Report," Public Service Commission of Maryland (Dec. 2019) at 8, <a href="https://www.psc.state.md.us/commission-reports/">https://www.psc.state.md.us/commission-reports/</a>>.

2018 compliance year, exceeding the SREC obligation of 224,481 SRECs.131

Delmarva Power is the only retail electric supplier that must file a compliance report with the Delaware Public Service Commission. Delmarva Power reported to the Delaware Public Service Commission that they satisfied their REC obligation of 670,488 credits for the compliance year ending May 31, 2019, with zero ACPs. 132 Delmarva Power satisfied their solar REC obligation of 124,073 credits with zero alternative compliance payments.

Prior to the 2017/2018 Delivery Year, the Illinois RPS had required electricity suppliers to satisfy at least 50 percent of their RPS obligation through ACPs. This requirement was removed for 2017/2018 Delivery Year and ACPs for ComEd decreased to \$74,148. The 2016-2017 ACPs for ComEd totaled \$40,575,311.133

The North Carolina Utilities Commission reported that Dominion North Carolina Power submitted its 2018 compliance report on August 13, 2019. The compliance report stated that Dominion met its general RPS requirement by purchasing 397,643 credits that consisted of wind and hydro RECs and energy efficiency credits (EECs).<sup>134</sup> Dominion also met its solar, poultry waste, and swine waste requirements by purchasing RECs.

The Michigan Public Service Commission reported that electric power suppliers met the 2017 renewable energy standards by retiring 10,218,115 RECs.135

New Jersey's Office of Clean Energy posted a summary of RPS compliance through the energy year ending May 31, 2018. 136 Electric power suppliers retired 9,166,102 class I RECs and 1,758,180 class II RECs. ACPs were submitted for deficiencies of 24 class I credits and 9

class II credits. Electric power suppliers retired 2,357,814 solar RECs and there were no deficiencies requiring solar ACPs.

Table 8-21 shows the RPS compliance cost incurred by PJM jurisdictions as reported by the jurisdictions.<sup>137</sup> The compliance costs are the cost of acquiring RECs plus the cost of any alternative compliance payments. The cost by type in Table 8-21 is an estimate based on average REC prices and assigning the reported alternative compliance payments to the solar standard. The cost of complying with RPS, as reported by the states, was \$3.5 billion over the four year period from 2014 through 2017 for the nine jurisdictions that had RPS and reported compliance costs.138 The average RPS compliance cost per year based on the reported compliance cost for the four year period from 2014 through 2017 was \$869.6 million. The compliance cost for 2017, the most recent year with complete data, was \$925.4 million.

<sup>131 &</sup>quot;Renewable Portfolio Standard Report to the General Assembly for Compliance Year 2018," Public Utilities Commission of Ohio (January 16, 2020), <a href="https://www.puco.ohio.gov/industry-10">https://www.puco.ohio.gov/industry-10</a> information/industry-topics/ohioe28099s-renewable-and-advanced-energy-portfolio-

<sup>132 &</sup>quot;Retail Electricity Supplier's RPS Compliance Report, Compliance Period: June 1, 2018-May 31, 2019," Delmarva Power, (Sept. 23, 2019), <a href="https://depsc.delaware.gov/delawares-renewable">https://depsc.delaware.gov/delawares-renewable</a> portfolio-standard-green-power-products/>

<sup>133 &</sup>quot;Annual Report Fiscal Year 2018," Illinois Power Agency (Feb. 15, 2019) at 46, <a href="https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www2.com/https://www.com/https://www.com/https://www.com/https://www.com/https://www.com/https://www.com/https://www.com/https://www.com/https://www.com/https://www.com/https://www.com/https://www.com/https://www.com/https://www.com/https://www.com/https://www.com/https://www.com/https://www.com/https://www.com/https://www.com/https://www.com/https://www.com/https://www.com/https://www.com/https://www.com/https://www.com/https://www.com/https://www.com/https://www.com/https://www.com/https://www.com/https://www.com/https://www.com/https://www.com/https://www.com/https://www.com/https://www.com/https://www.com/https://www.com/https://www.com/https illinois.gov/sites/ipa/Pages/IPA\_Reports.aspx:

<sup>134 &</sup>quot;Annual Report Regarding Renewable Energy and Energy Efficiency Portfolio Standard in North Carolina," North Carolina Utilities Commission (Oct. 1, 2019) at 38, <a href="https://www.ncuc.net/Reps">https://www.ncuc.net/Reps</a>

<sup>135 &</sup>quot;Report on the Implementation and Cost-Effectiveness of the P.A. 295 Renewable Energy Standard," Michigan Public Service Commission (Feb. 15, 2019), <a href="https://www.michigan.gov/mpsc/0,9535,7-395-93309\_93438\_93459\_94932----,00.html">https://www.michigan.gov/mpsc/0,9535,7-395-93309\_93438\_93459\_94932----,00.html</a>.

<sup>136</sup> See RPS Report Summary 2005-2018, New Jersey's Clean Energy Program (Dec. 31, 2018),

<sup>137</sup> RPS compliance cost totals for Illinois, Michigan, and North Carolina reflect the RPS compliance cost attributable to PJM load in each of the states.

<sup>138</sup> The actual PJM RPS compliance cost exceeds the reported \$3.4 billion since this total does not

Table 8-21 RPS Compliance Cost<sup>139</sup> <sup>140</sup> <sup>141</sup> <sup>142</sup> <sup>143</sup> <sup>144</sup> <sup>145</sup> <sup>146</sup> <sup>147</sup> <sup>148</sup>

| RPS             |           | 2014          | 2015          | 2016          | 2017          | 2018          |
|-----------------|-----------|---------------|---------------|---------------|---------------|---------------|
| Delaware        | Total RPS |               | \$16,013,421  | \$18,409,631  | \$18,772,855  | \$18,341,916  |
|                 | Solar     |               | \$7,070,254   | \$7,748,073   | \$7,105,726   | \$6,565,240   |
|                 | Non-Solar |               | \$8,943,167   | \$10,661,557  | \$11,667,129  | \$11,776,676  |
| Illinois        | Total RPS | \$21,701,688  | \$24,817,068  | \$25,718,863  | \$25,919,372  | \$25,775,523  |
| Maryland        | Total RPS | \$103,990,914 | \$126,727,632 | \$135,198,524 | \$72,009,070  | \$84,806,928  |
|                 | Solar     | \$29,372,737  | \$39,055,714  | \$45,556,987  | \$21,275,664  | \$27,351,388  |
|                 | Tier I    | \$70,630,620  | \$85,054,001  | \$88,200,121  | \$50,045,621  | \$56,406,247  |
|                 | Tier II   | \$3,987,557   | \$2,617,917   | \$1,441,416   | \$687,785     | \$1,049,293   |
| Michigan        | Total RPS | \$476,535     | \$0           | \$3,264,504   | \$3,961,262   |               |
| New Jersey      | Total RPS | \$395,782,297 | \$524,761,382 | \$593,441,037 | \$606,312,461 |               |
|                 | Solar     | \$322,504,920 | \$417,359,783 | \$481,540,738 | \$503,797,182 |               |
|                 | Class I   | \$66,071,749  | \$98,185,431  | \$100,910,465 | \$91,872,615  |               |
|                 | Class II  | \$7,205,628   | \$9,216,167   | \$10,989,834  | \$10,642,664  |               |
| North Carolina  | Total RPS | \$297,513     | \$358,436     | \$317,644     | \$234,264     | \$442,579     |
| Ohio            | Total RPS | \$42,581,477  | \$42,584,233  | \$37,631,481  | \$39,943,836  | \$50,214,523  |
|                 | Solar     | \$17,666,730  | \$14,843,052  | \$11,564,584  | \$9,435,730   | \$9,419,092   |
|                 | Non-Solar | \$24,914,747  | \$27,741,181  | \$26,066,897  | \$30,508,106  | \$40,795,431  |
| Pennsylvania    | Total RPS | \$86,184,477  | \$114,586,932 | \$125,041,911 | \$115,585,212 |               |
|                 | Solar     | \$14,163,543  | \$19,227,690  | \$21,876,876  | \$17,987,722  |               |
|                 | Tier I    | \$70,922,431  | \$94,339,032  | \$101,700,328 | \$95,370,456  |               |
|                 | Tier II   | \$1,098,503   | \$1,020,210   | \$1,464,707   | \$2,227,034   |               |
| Washington D.C. | Total RPS | \$27,372,970  | \$38,540,633  | \$47,163,353  | \$42,678,813  | \$50,609,701  |
|                 | Solar     | \$25,145,143  | \$36,526,662  | \$44,897,161  | \$38,571,061  | \$45,673,261  |
|                 | Tier I    | \$2,140,860   | \$1,899,232   | \$2,132,072   | \$3,960,018   | \$4,809,857   |
|                 | Tier II   | \$86,966      | \$114,738     | \$134,119     | \$147,734     | \$126,583     |
| PJM             | Total RPS | \$678,387,871 | \$888,389,738 | \$986,186,949 | \$925,417,144 | \$230,191,169 |

# **Emission Controlled Capacity and Emissions**

## **Emission Controlled Capacity**

Environmental regulations affect decisions about emission control investments in existing units, investment in new units and decisions to retire units lacking emission controls.<sup>149</sup> Most PJM units burning fossil fuels have installed emission control technology. All coal steam units in PJM are compliant with the state and federal emissions limits established by MATS.

Table 8-22 shows  $SO_2$  emission controls by fossil fuel fired units in PJM.<sup>150</sup> <sup>151</sup> <sup>152</sup> Coal has the highest  $SO_2$  emission rate, while natural gas and diesel oil have lower  $SO_2$  emission rates.<sup>153</sup> Of the current 62,327.9 MW of coal capacity in

 $<sup>139 \ &</sup>quot;Delmarva \ Power \ (E \ Light's \ 2018 \ RPS \ Compliance \ Report," \ Delmarva \ Power \ (Sept. \ 23, \ 2019), \ < https://depsc.delaware.gov/delawares-renewable-portfolio-standard-green-power-products/>$ 

<sup>140 &</sup>quot;Fiscal Year 2018 Annual Report," February 15, 2019, "Report on Costs and Benefits of Renewable Resource Procurement," April 1, 2016, Illinois Power Agency (IPA), <a href="https://www2.illinois.gov/sites/ipa/Pages/IPA\_Reports.aspx">https://www2.illinois.gov/sites/ipa/Pages/IPA\_Reports.aspx</a>. The compliance cost entry for Illinois represents the ComEd cost of RECs as given in Section 11, Table 2.

<sup>141 &</sup>quot;Renewable Energy Portfolio Standard Report," Public Service Commission of Maryland (Dec. 2019) at 8, <a href="https://www.psc.state.md.us/commission-reports/">https://www.psc.state.md.us/commission-reports/</a>>

<sup>142</sup> Appendix C in "Report on the Implementation and Cost-Effectiveness of the P.A. 295 Renewable Energy Standard," Michigan Public Service Commission, February 15, 2019, <a href="https://www.michigan.gov/mpsc/0,9535,7-395-93309\_93438\_93459\_94932----,00.html">https://www.michigan.gov/mpsc/0,9535,7-395-93309\_93438\_93459\_94932----,00.html</a>. The compliance cost entry reflects the compliance cost of the Indiana Michigan Power Company, which is the only investor owned utilities whose service area is in the PJM footprint.

<sup>143 &</sup>quot;RPS Report Summary 2005-2018," New Jersey's Clean Energy Program, December 31, 2018, <a href="http://njcleanenergy.com/renewable-energy/program-updates/rps-compliance-reports">http://njcleanenergy.com/renewable-energy/program-updates/rps-compliance-reports</a>

<sup>144 &</sup>quot;Renewable Portfolio Standard Report to the General Assembly for Compliance Year 2017, "Public Utilities Commission of Ohio, March 20, 2019, <a href="https://www.puco.ohio.gov/industry-information/industry-topics/ohioe28099s-renewable-and-advanced-energy-portfolio-standard/">https://www.puco.ohio.gov/industry-information/industry-topics/ohioe28099s-renewable-and-advanced-energy-portfolio-standard/</a>.

<sup>145 &</sup>quot;2017 Annual Report Alternative Energy Portfolio Standards Act of 2004," Pennsylvania Public Utility Commission, March 2018, <a href="https://www.pennaeps.com/annual-reports/">https://www.pennaeps.com/annual-reports/</a>.

<sup>146 &</sup>quot;Report on the Renewable Energy Portfolio Standard for Compliance Year 2018," Public Service Commission of the District of Columbia, Executive Summary, May 1, 2019, <a href="https://dcpsc.org/Orders-and-Regulations/PSC-Reports-to-the-DC-Council/Renewable-Energy-Portfolio-Standard.aspx">https://dcpsc.org/Orders-and-Regulations/PSC-Reports-to-the-DC-Council/Renewable-Energy-Portfolio-Standard.aspx</a>.

<sup>147 &</sup>quot;Application of Dominion Energy North Carolina for Approval of Cost Recovery for Renewable Energy and Energy Efficiency Portfolio Standard Compliance and Related Costs", Docket No. E-22, Sub 557, Sub 558, August 30, 2018 <a href="https://www.ncuc.net/">https://www.ncuc.net/</a>. The North Carolina compliance cost entries reflects the compliance cost of Dominion Energy North Carolina.

<sup>148</sup> The reporting period for RPS compliance in Delaware, Illinois, New Jersey, and Pennsylvania corresponds to PJM capacity market delivery years, June 1 through May 31. The compliance cost amounts reported by these states were converted to calendar year by assuming the compliance cost was evenly spread across the months in the compliance year.

<sup>149</sup> See EPA, "National Ambient Air Quality Standards (NAAQS)," <a href="https://www.epa.gov/criteria-air-pollutants/naaqs-table">https://www.epa.gov/criteria-air-pollutants/naaqs-table</a> (Accessed February 18, 2020).

<sup>150</sup> See EPA, "Air Market Programs Data," <a href="http://ampd.epa.gov/ampd/">http://ampd.epa.gov/ampd/</a> (Accessed February 18, 2019).

<sup>151</sup> Air Markets Programs Data is submitted quarterly. Generators have 60 days after the end of the quarter to submit data, and all data is considered preliminary and subject to change until it is finalized in June of the following year. The most recent complete set of emissions data is from the second quarter of 2019.

<sup>152</sup> The total MW are less than the 186,502.9 reported in Section 5: Capacity Market, because EPA data on controls could not be matched to some PJM units. "Air Markets Program Data," <a href="http://ampd.epa.gov/ampd/QueryToolie.html">http://ampd.epa.gov/ampd/QueryToolie.html</a> (Accessed February 18, 2020).

<sup>153</sup> Diesel oil includes number 1, number 2, and ultra-low sulfur diesel. See EPA, "Electronic Code of Federal Regulations, Title 40, Chapter 1, Subchapter C, Part 72, Subpart A, Section 72.2," <a href="http://www.ecfr.gov/cgi-bin/text-idx/SID=4f18612541a393473efb13acb879d470Emc=trueEnode=se40.18.72\_12Etrgn=div8">http://www.ecfr.gov/cgi-bin/text-idx/SID=4f18612541a393473efb13acb879d470Emc=trueEnode=se40.18.72\_12Etrgn=div8</a> (Accessed February 18, 2020).

PJM, 58,584.6 MW of capacity, 94.0 percent, has some form of FGD (flue-gas desulfurization) technology to reduce SO<sub>2</sub> emissions.

Table 8-22 SO<sub>2</sub> emission controls by fuel type (MW): December 31, 2019<sup>154</sup>

|             | SO <sub>2</sub> | No SO <sub>2</sub> |           | Percent    |
|-------------|-----------------|--------------------|-----------|------------|
|             | Controlled      | Controls           | Total     | Controlled |
| Coal        | 58,584.6        | 3,743.3            | 62,327.9  | 94.0%      |
| Diesel Oil  | 0.0             | 5,322.6            | 5,322.6   | 0.0%       |
| Natural Gas | 0.0             | 71,607.2           | 71,607.2  | 0.0%       |
| Other       | 325.0           | 4,805.7            | 5,130.7   | 6.3%       |
| Total       | 58,909.6        | 85,478.8           | 144,388.4 | 40.8%      |

Table 8-23 shows NO<sub>x</sub> emission controls by fossil fuel fired units in PJM. Coal has the highest NO<sub>v</sub> emission rate, while natural gas and diesel oil have lower NO<sub>v</sub> emission rates. Of the current 62,327.9 MW of coal capacity in PJM, 61,796.4 MW of capacity, 99.1 percent, has some form of emissions controls to reduce NO<sub>x</sub> emissions. Most units in PJM have NO<sub>x</sub> emission controls in order to meet each state's emission compliance standards, based on whether a state is part of CSAPR, CAIR, Acid Rain Program (ARP) or a combination of the three. The NO<sub>v</sub> compliance standards of MATS require the use of selective catalytic reduction (SCRs) or selective noncatalytic reduction (SCNRs) for coal steam units, as well as SCRs or water injection technology for peaking combustion turbine units.155

Table 8-23 NO<sub>v</sub> emission controls by fuel type (MW): As of December 31, 2019

|             | NO <sub>x</sub> | No NO <sub>x</sub> |           | Percent    |
|-------------|-----------------|--------------------|-----------|------------|
|             | Controlled      | Controls           | Total     | Controlled |
| Coal        | 61,796.4        | 531.5              | 62,327.9  | 99.1%      |
| Diesel Oil  | 1,612.6         | 3,710.0            | 5,322.6   | 30.3%      |
| Natural Gas | 70,191.8        | 1,415.4            | 71,607.2  | 98.0%      |
| Other       | 2,651.7         | 2,479.0            | 5,130.7   | 51.7%      |
| Total       | 136,252.5       | 8,135.9            | 144,388.4 | 94.4%      |

Table 8-24 shows particulate emission controls by fossil fuel units in PJM. Almost all coal units (99.6 percent) in PJM have particulate controls, as well as a few natural gas units (3.9 percent) and units with other fuel sources (57.9 percent). Typically, technologies such as electrostatic precipitators (ESP) or fabric filters (baghouses) are used to reduce particulate matter from coal steam units.156 Fabric filters work by allowing the

flue gas to pass through a tightly woven fabric which filters out the particulates. In PJM, 62,082.9 MW out of 62,327.9 MW, 99.6 percent, of all coal steam unit MW, have some type of particulate emissions control technology, as of December 31, 2019. All coal steam units in PJM are compliant with the state and federal emissions limits established by MATS.<sup>157</sup> In order to achieve compliance with MATS, most coal steam units in PJM have particulate emission controls in the form of ESPs, but many units have also installed baghouse technology, or a combination of an FGD and SCR. Currently, 136 of the 151 coal steam units have baghouse or FGD technology installed, representing 55,984.6 MW out of the 62,327.9 MW total coal capacity, or 89.8 percent.

Table 8-24 Particulate emission controls by fuel type (MW): As of December 31, 2019

|             | Particulate | No Particulate |           | Percent    |
|-------------|-------------|----------------|-----------|------------|
|             | Controlled  | Controls       | Total     | Controlled |
| Coal        | 62,082.9    | 245.0          | 62,327.9  | 99.6%      |
| Diesel Oil  | 0.0         | 5,322.6        | 5,322.6   | 0.0%       |
| Natural Gas | 2,786.0     | 68,821.2       | 71,607.2  | 3.9%       |
| Other       | 2,970.5     | 2,160.2        | 5,130.7   | 57.9%      |
| Total       | 67,839.4    | 76,549.0       | 144,388.4 | 47.0%      |

#### **Emissions**

Figure 8-13 shows the total CO, emissions and the CO, emissions per MWh within PJM for all CO2 emitting units, for each quarter from 1999 to the fourth quarter of 2019. Figure 8-13 also shows the CO<sub>2</sub> emissions per MWh of total generation within PJM for each quarter from the third guarter of 2000 to the fourth guarter of 2019. 158 159 For the period from the first quarter of 1999 through the fourth quarter of 2019, the minimum CO<sub>2</sub> produced per MWh was 0.69 short tons per MWh in the fourth quarter of 2019, and the maximum was 0.96 short tons per MWh in the first quarter of 2010. Total PJM generation decreased from 201,945.1 GWh in the fourth quarter of 2018 to 194,930.8 GWh in the fourth quarter of 2019, while CO<sub>2</sub> produced decreased from 94.3 million short tons in the fourth quarter of 2018 to 84.2 million short tons in the fourth quarter of 2019.160 The reduction in total CO<sub>2</sub> emissions was primarily the

<sup>154</sup> The "other" category includes petroleum coke, wood, process gas, residual oil, other gas, and other oil. The EPA's "other" category does not have strict definitions for inclusion.

<sup>155</sup> See EPA. "Mercury and Air Toxics Standards, Cleaner Power Plants," <a href="https://www.epa.gov/mats/">https://www.epa.gov/mats/</a> cleaner-power-plants#controls> (Accessed February 18, 2020).

<sup>156</sup> See EPA, "Air Pollution Control Technology Fact Sheet," <a href="https://www3.epa.gov/ttn/catc/dir1/ff-156">https://www3.epa.gov/ttn/catc/dir1/ff-156</a> See EPA, "Air Pollution Control Technology Fact Sheet," <a href="https://www3.epa.gov/ttn/catc/dir1/ff-156">https://www3.epa.gov/ttn/catc/dir1/ff-156</a> See EPA, "Air Pollution Control Technology Fact Sheet," <a href="https://www3.epa.gov/ttn/catc/dir1/ff-156">https://www3.epa.gov/ttn/catc/dir1/ff-156</a> See EPA, "Air Pollution Control Technology Fact Sheet," <a href="https://www3.epa.gov/ttn/catc/dir1/ff-156">https://www3.epa.gov/ttn/catc/dir1/ff-156</a> See EPA, "Air Pollution Control Technology Fact Sheet," <a href="https://www3.epa.gov/ttn/catc/dir1/ff-156">https://www3.epa.gov/ttn/catc/dir1/ff-156</a> See EPA, "Air Pollution Control Technology Fact Sheet," <a href="https://www3.epa.gov/ttn/catc/dir1/ff-156">https://www3.epa.gov/ttn/catc/dir1/ff-156</a> See EPA, "Air Pollution Control Technology Fact Sheet," <a href="https://www3.epa.gov/ttn/catc/dir1/ff-156">https://www3.epa.gov/ttn/catc/dir1/ff-156</a> See EPA, "Air Pollution Control Technology Fact Sheet," <a href="https://www.air.org/ttn/catc/dir1/ff-156">https://www.air.org/ttn/catc/dir1/ff-156</a> See EPA, "Air Pollution Control Technology Fact Sheet," <a href="https://www.air.org/ttn/catc/dir1/ff-156">https://www.air.org/ttn/catc/dir1/ff-156</a> See EPA, "Air Pollution Control Technology Fact Sheet," <a href="https://www.air.org/ttn/catc/dir1/ff-156">https://www.air.org/ttn/catc/dir1/ff-156</a> See EPA, "Air Pollution Control Technology Fact Sheet," <a href="https://www.air.org/ttn/catc/dir1/ff-156">https://www.air.org/ttn/catc/dir1/ff-156</a> See EPA, "Air Pollution Control Technology Fact Sheet," <a href="https://www.air.org/ttn/catc/dir1/ff-156">https://www.air.org/ttn/catc/dir1/ff-156</a> See EPA, The EPA See EPA See

<sup>157</sup> On April 14, 2016, the EPA issued a final finding regarding the Mercury and Air Toxics Standards. See EPA. "Regulatory Actions," <a href="https://www.epa.gov/mats/regulatory-actions">https://www.epa.gov/mats/regulatory-actions</a> and-air-toxics-standards-mats-power-plants> (Accessed February 18, 2020)

<sup>158</sup> Unless otherwise noted, emissions are measured in short tons. A short ton is 2,000 pounds. 159 Emissions data for the fourth quarter of 2019 was not yet finalized at the time of this report because generators have 60 days after the end of the guarter to submit their emissions data

<sup>160</sup> See the 2019 Quarterly State of the Market Report for PJM: January through September. Section

result of a decrease in the use of coal and an increase in the use of natural gas for generation.

Figure 8-13 CO<sub>2</sub> emissions by quarter (millions of short tons), by PJM units: 1999 through 2019<sup>161</sup> 162

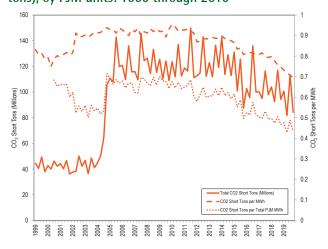



Figure 8-14 shows the total CO<sub>2</sub> emissions on peak and off peak and the CO<sub>2</sub> emissions per MWh for all CO<sub>2</sub> emitting units. Since the first quarter of 1999 the amount of CO<sub>2</sub> produced per MWh during off peak hours was at a minimum of 0.69 short tons per MWh in the fourth quarter of 2019, and a maximum of 0.97 short tons per MWh in the second quarter of 2010. Since the first quarter of 1999 the amount of CO<sub>2</sub> produced per MWh during on peak hours was at a minimum of 0.70 short tons per MWh in the fourth quarter of 2019, and a maximum of 0.94 short tons per MWh in the first quarter of 2010. In the fourth quarter of 2019, CO<sub>2</sub> emissions were 0.69 short tons per MWh for off peak hours and 0.70 for on peak hours.

Figure 8-14 Total CO<sub>2</sub> emissions during on and off peak hours by quarter (millions of short tons), by PJM units: 1999 through 2019<sup>163</sup>

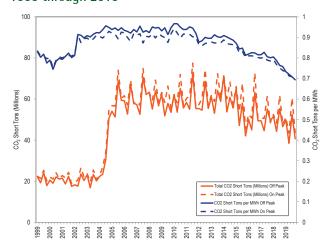



Figure 8-15 shows the total SO<sub>2</sub> and NO<sub>3</sub> emissions and the short ton emissions per MWh for all SO2 and  $NO_x$  emitting units, and the  $SO_2$  and  $NO_x$  emissions per MWh of total PJM generation. For the period from the first quarter of 1999 through the fourth quarter of 2019, the minimum SO<sub>2</sub> produced per MWh was 0.000411 short tons per MWh in the third quarter of 2019, and the maximum was 0.008141 short tons per MWh in the fourth quarter of 2003. For the period from the first quarter of 1999 through the fourth quarter of 2019, the minimum NO<sub>v</sub> produced per MWh was at a 0.000296 short tons per MWh in the third quarter of 2019, and the maximum was 0.002215 short tons per MWh in the first quarter of 2005. In the fourth quarter of 2019, SO<sub>2</sub> emissions were 0.000418 short tons per MWh and  $NO_{y}$  emissions were 0.000360 short tons per MWh. The consistent decline in SO<sub>2</sub> and NO<sub>3</sub> emissions starting in 2006 is the result of a decline in the use of coal, an increase in the use of natural gas, and the installation of environmental controls from 2006 to 2019.164 165

<sup>161</sup> The emissions are calculated from the continuous emission monitoring system (CEMS) data from generators located within the PJM footprint.

<sup>162</sup> In 2004 and 2005, PJM integrated the American Electric Power (AEP), ComEd, Dayton Power & Light Company (DAY), Dominion, and Duquesne Light Company (DLCO) Control Zones. The large increase in total emissions from 2004 to 2005 was a result of these integrations. In June 2011, PJM integrated the American Transmission Systems, Inc. (ATSI) Control Zone. In January 2012, PJM integrated the Duke Energy Ohio/Kentucky (DEOK) Control Zone. In June 2013, PJM integrated the Eastern Kentucky Power Cooperative (EKPC). In December 2018, PJM integrated the Ohio Valley Electric Corporation (OVEC).

<sup>163</sup> The emissions are calculated from the continuous emission monitoring system (CEMS) data from generators located within the PJM footprint.

<sup>164</sup> See EIA, "Changes in coal sector led to less SO<sub>3</sub> and NO<sub>4</sub> emissions from electric power industry," <a href="https://www.eia.gov/todayinenergy/detail.php?id=37752">https://www.eia.gov/todayinenergy/detail.php?id=37752</a> (Accessed October 25, 2019).

<sup>165</sup> See EIA, "Sulfur dioxide emissions from U.S. power plants have fallen faster than coal generation," <a href="https://www.eia.gov/todayinenergy/detail.php?id=29812">https://www.eia.gov/todayinenergy/detail.php?id=29812</a> (Accessed October 25, 2010)

Figure 8-15 SO<sub>2</sub> and NO<sub>3</sub> emissions by quarter (thousands of short tons), by PJM units: 1999 through 2019166

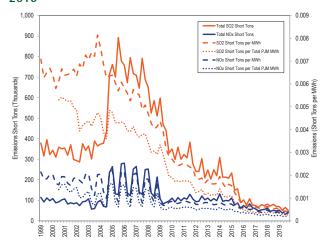
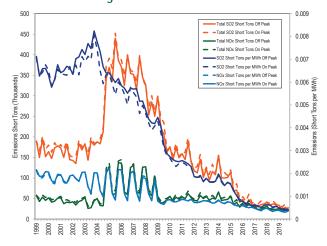




Figure 8-16 shows the total on peak hour and off peak hour SO<sub>2</sub> and NO<sub>3</sub> emissions and the emissions per MWh from emitting resources for all SO<sub>2</sub> and NO<sub>3</sub> emitting units. For the period from the first quarter of 1999 through the fourth quarter of 2019, the minimum SO produced per MWh during off peak hours was 0.000387 short tons per MWh in the third quarter of 2019, and the maximum was 0.008239 short tons per MWh in the fourth quarter of 2003. For the period from the first quarter of 1999 through the fourth quarter of 2019, the minimum SO<sub>2</sub> produced per MWh during on peak hours was 0.000432 short tons per MWh in the third quarter of 2019, and the maximum was 0.008048 short tons per MWh in the fourth quarter of 2003. For the period from the first quarter of 1999 through the fourth quarter of 2019, the minimum NO<sub>v</sub> produced per MWh during off peak hours was 0.000294 short tons per MWh in the third quarter of 2019, and the maximum was 0.002215 short tons per MWh in the first quarter of 2005. For the period from the first quarter of 1999 through the fourth quarter of 2019, the minimum NO<sub>v</sub> produced per MWh during on peak hours was 0.000298 short tons per MWh in the third quarter of 2019 and the maximum was 0.002215 short tons per MWh in the first quarter of 2005. In the fourth quarter of 2019, SO<sub>2</sub> emissions were 0.000402 short tons per MWh and 0.000432 short tons per MWh for off and on peak hours. In the fourth quarter of 2019,  $NO_x$  emissions were 0.000357 short

tons per MWh and 0.000363 short tons per MWh for off and on peak hours.

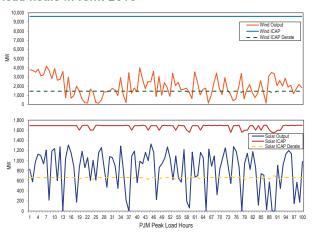
Figure 8-16 SO<sub>2</sub> and NO<sub>3</sub> emissions during on and off peak hours by quarter (thousands of short tons), by PJM units: 1999 through 2019167



# Renewable Energy Output

## Wind and Solar Peak Hour Output

The capacity of solar and wind resources are derated from the nameplate or installed capacity value to a level intended to reflect that the resources are a substitute for other capacity resources in the PJM capacity market. The derating percentages are intended to reflect expected performance during high load hours and are based on actual historical performance. Figure 8-17 shows the wind and solar output during the top 100 load hours in PJM in 2019. Of the top 100 load hours in PJM in 2019, 85 are PJM defined peak load hours. The hours are in descending order by load. The solid lines are the total ICAP of wind or solar PJM resources. The dashed lines are the total capacity committed for each unit, or the ICAP of wind and solar PJM resources derated to 14.7 and 38.0 percent if the unit does not participate in the capacity market.168 The actual output of the wind and solar resources during the top 100 load hours ranges above and below the derated capacity values. Wind output was above the derated ICAP for 64 hours and below the derated ICAP for 36 hours of the top 100 load


<sup>166</sup> The emissions are calculated from the continuous emission monitoring system (CEMS) data from

<sup>167</sup> The emissions are calculated from the continuous emission monitoring system (CEMS) data from generators located within the PJM footprint.

<sup>168</sup> PJM used derating factors of 13 and 38 percent until June 1, 2017. The current derating factors depend on installation type. PJM, Class Average Capacity Factors, <a href="https://www.pjm.co">https://www.pjm.co</a> ning/res-adeq/class-average-wind-capacity-factors.ashx?la=en> (Accessed October 17, 2019).

hours in 2019. The wind capacity factor for the top 100 load hours in 2019 was 20.4 percent. Wind output was above the derated ICAP for 6,053 hours and below the derated ICAP for 2,707 hours in 2019. The wind capacity factor in 2019 was 32.4 percent. Solar output was above the derated ICAP for 69 hours and below the derated ICAP for 31 hours of the top 100 load hours in 2019. The solar capacity factor for the top 100 load hours in 2019 was 48.9 percent. Solar output was above the derated ICAP for 1,991 hours and below the derated ICAP for 6,769 hours in 2019. The solar capacity factor in 2019 was 22.8 percent.

Figure 8-17 Wind and solar output during the top 100 load hours in PJM: 2019



#### Wind Units

Table 8-25 shows the capacity factors of wind units in PJM. In 2019, the capacity factor of wind units in PJM was 33.2 percent. Wind units that were capacity resources had a capacity factor of 32.4 percent and an installed capacity of 8,300 MW. Wind units that were energy only had a capacity factor of 38.1 percent and an installed capacity of 2,307 MW. Wind capacity in RPM is derated to 14.7 or 17.6 percent of nameplate capacity for the capacity market, based on the wind farm terrain, and energy only resources are not included in the capacity market. 169

Table 8-25 Capacity factor of wind units in PJM: 2019<sup>170</sup>

| Type of Resource     | Capacity Factor | Installed Capacity (MW) |
|----------------------|-----------------|-------------------------|
| Energy-Only Resource | 38.1%           | 2,307                   |
| Capacity Resource    | 32.4%           | 8,300                   |
| All Units            | 33.2%           | 10,607                  |

Figure 8-18 shows the average hourly real-time generation of wind units in PJM, by month for January 1 through December 31, 2019. The hour with the highest average output, 4,188 MW, occurred in December, and the hour with the lowest average output, 789 MW, occurred in July. Wind output in PJM is generally higher during off peak hours and lower during on peak hours.

Figure 8-18 Average hourly real-time generation of wind units in PJM: 2019

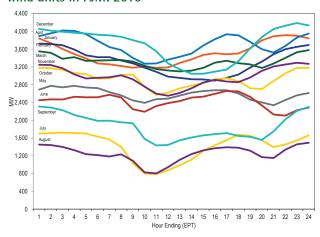
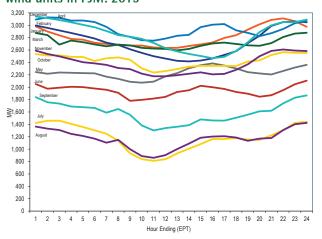



Table 8-26 shows the generation and capacity factor of wind units by month from January 1, 2018, through December 31, 2019.

Table 8-26 Capacity factor of wind units in PJM by month: January 2018 through December 2019


|           | 2018         |          | 2019         |          |
|-----------|--------------|----------|--------------|----------|
|           | Generation   | Capacity | Generation   | Capacity |
| Month     | (MWh)        | Factor   | (MWh)        | Factor   |
| January   | 2,599,270.5  | 48.0%    | 2,223,142.4  | 41.2%    |
| February  | 1,948,008.3  | 40.1%    | 1,882,076.3  | 38.7%    |
| March     | 2,146,698.1  | 41.1%    | 2,076,120.4  | 38.0%    |
| April     | 1,840,728.2  | 37.2%    | 2,244,185.1  | 42.6%    |
| May       | 1,370,215.9  | 27.3%    | 1,635,756.1  | 30.6%    |
| June      | 1,010,945.4  | 21.0%    | 1,480,459.1  | 29.0%    |
| July      | 790,461.6    | 16.6%    | 883,538.1    | 17.0%    |
| August    | 884,856.3    | 19.0%    | 776,254.7    | 15.9%    |
| September | 1,047,738.1  | 22.0%    | 1,108,140.3  | 22.2%    |
| October   | 1,870,676.4  | 35.6%    | 1,826,832.7  | 34.3%    |
| November  | 1,835,280.5  | 36.3%    | 1,835,054.6  | 34.8%    |
| December  | 2,003,254.1  | 37.0%    | 2,368,918.3  | 42.0%    |
| Annual    | 19,348,133.6 | 32.2%    | 20,340,478.1 | 32.4%    |

<sup>169</sup> PJM. Class Average Capacity Factors, <a href="https://www.pjm.com/-/media/planning/res-adeq/class-average-wind-capacity-factors.ashx?la=en">https://www.pjm.com/-/media/planning/res-adeq/class-average-wind-capacity-factors.ashx?la=en</a> (Accessed October 17, 2019).

<sup>170</sup> Capacity factor is calculated based on online date of the resource

Wind units that are capacity resources are required, like all capacity resources except demand resources, to offer the energy associated with their cleared capacity in the Day-Ahead Energy Market and in the Real-Time Energy Market. Figure 8-19 shows the average hourly dayahead generation offers of wind units in PJM, by month.

Figure 8-19 Average hourly day-ahead generation of wind units in PJM: 2019



Output from wind turbines displaces output from other generation types because, in general, wind turbines generate power when the wind is blowing, regardless of the price. This displacement affects the output of marginal units in PJM. The magnitude and type of effect on marginal unit output depends on the level of wind turbine output, its location, time and duration. One measure of this displacement is based on the mix of marginal units when wind is producing output.<sup>171</sup> Figure 8-20 and Table 8-27 show the hourly average proportion of marginal units by fuel type mapped to the hourly average MW of real-time wind generation in 2019. This is not an exact measure of displacement because it is not based on a redispatch of the system without wind resources. In 2019, the dispatch instruction for marginal wind resources was to reduce output for 85 percent of the unit intervals. When wind appears as the displaced fuel at times when wind resources were on the margin this means that there was no displacement for those hours, if the dispatch instruction was to lower the generation. The level of wind displaced by wind is thus overstated.

Figure 8-20 Marginal fuel at time of wind generation in PJM: 2019



<sup>171</sup> The measure is based on the principle that any incremental change in the wind output is balanced by the change in the output of marginal generators, while holding everything else

Table 8-27 Marginal fuel MW at time of wind generation in PJM: 2019

|      |       |        |     | Light |      | Natural |         | Waste |       |          |     | Heavy |       |         |
|------|-------|--------|-----|-------|------|---------|---------|-------|-------|----------|-----|-------|-------|---------|
| Hour | Coal  | Diesel | LFG | Oil   | Misc | Gas     | Nuclear | Coal  | Wind  | Kerosene | MSW | Oil   | Solar | Total   |
| 0    | 751.6 | 2.5    | 1.0 | 2.7   | 3.7  | 2,032.3 | 47.8    | 14.6  | 163.8 | 0.0      | 0.0 | 0.0   | 0.0   | 3,019.9 |
| 1    | 773.4 | 3.5    | 0.0 | 1.9   | 2.7  | 2,032.2 | 50.3    | 11.5  | 139.2 | 0.0      | 0.0 | 0.0   | 0.0   | 3,014.8 |
| 2    | 647.9 | 2.8    | 0.0 | 1.2   | 4.4  | 2,094.8 | 59.9    | 13.1  | 147.4 | 0.6      | 0.0 | 0.0   | 0.0   | 2,972.0 |
| 3    | 633.8 | 3.6    | 0.0 | 0.6   | 2.8  | 2,055.1 | 53.0    | 18.3  | 162.8 | 0.7      | 0.0 | 0.0   | 0.0   | 2,930.5 |
| 4    | 659.4 | 4.1    | 0.7 | 0.5   | 2.3  | 1,955.6 | 62.6    | 9.0   | 172.1 | 0.0      | 3.2 | 0.0   | 0.0   | 2,869.4 |
| 5    | 704.2 | 3.4    | 8.0 | 0.0   | 2.1  | 1,839.3 | 68.8    | 13.8  | 184.1 | 8.0      | 3.6 | 0.0   | 0.0   | 2,820.9 |
| 6    | 712.3 | 4.7    | 1.2 | 8.0   | 2.0  | 1,810.4 | 74.4    | 7.4   | 175.3 | 0.0      | 1.5 | 0.0   | 0.0   | 2,797.3 |
| 7    | 790.0 | 1.1    | 2.0 | 15.2  | 0.9  | 1,735.1 | 45.2    | 29.3  | 144.3 | 1.3      | 0.0 | 0.3   | 2.0   | 2,766.6 |
| 8    | 848.7 | 0.4    | 3.4 | 12.0  | 0.7  | 1,632.1 | 22.7    | 34.3  | 94.5  | 0.0      | 0.8 | 0.0   | 1.9   | 2,651.6 |
| 9    | 847.2 | 2.1    | 0.0 | 9.6   | 1.0  | 1,498.7 | 22.9    | 20.7  | 96.5  | 0.0      | 0.6 | 0.0   | 5.8   | 2,505.1 |
| 10   | 780.7 | 1.3    | 0.0 | 11.6  | 0.7  | 1,492.3 | 30.1    | 20.7  | 106.8 | 0.0      | 0.0 | 0.0   | 4.4   | 2,448.5 |
| 11   | 848.0 | 0.4    | 0.8 | 12.2  | 1.1  | 1,408.0 | 25.5    | 20.9  | 123.1 | 0.0      | 0.4 | 0.2   | 7.0   | 2,447.5 |
| 12   | 857.8 | 8.0    | 0.6 | 10.1  | 0.3  | 1,448.4 | 32.3    | 20.9  | 125.3 | 0.0      | 0.0 | 0.0   | 4.5   | 2,501.0 |
| 13   | 857.4 | 0.0    | 2.7 | 11.6  | 3.2  | 1,480.3 | 35.0    | 23.3  | 139.2 | 0.0      | 0.0 | 0.0   | 2.9   | 2,555.7 |
| 14   | 841.4 | 0.0    | 0.3 | 20.4  | 3.7  | 1,573.8 | 40.3    | 21.7  | 122.3 | 0.0      | 8.0 | 0.0   | 7.3   | 2,632.0 |
| 15   | 877.2 | 0.0    | 1.4 | 22.0  | 1.3  | 1,585.6 | 41.1    | 21.5  | 137.1 | 0.0      | 0.7 | 0.0   | 8.1   | 2,695.9 |
| 16   | 883.0 | 1.0    | 0.0 | 17.5  | 1.2  | 1,579.2 | 48.9    | 25.5  | 174.5 | 0.4      | 1.2 | 0.0   | 8.0   | 2,733.1 |
| 17   | 897.1 | 0.9    | 1.5 | 28.2  | 2.2  | 1,566.4 | 42.9    | 33.8  | 167.0 | 0.9      | 0.0 | 0.0   | 0.2   | 2,741.0 |
| 18   | 943.2 | 2.3    | 8.0 | 25.6  | 1.7  | 1,553.0 | 34.7    | 40.6  | 132.3 | 1.8      | 0.0 | 0.0   | 1.4   | 2,737.4 |
| 19   | 884.9 | 1.2    | 0.6 | 26.3  | 1.8  | 1,607.8 | 29.0    | 18.1  | 158.4 | 0.0      | 0.0 | 0.0   | 0.0   | 2,728.1 |
| 20   | 933.5 | 0.4    | 0.0 | 19.8  | 2.3  | 1,610.4 | 27.1    | 25.7  | 147.9 | 0.4      | 0.4 | 1.8   | 0.0   | 2,769.7 |
| 21   | 950.8 | 3.0    | 0.2 | 12.0  | 0.4  | 1,707.2 | 34.4    | 29.3  | 140.4 | 0.3      | 0.4 | 0.9   | 0.0   | 2,879.3 |
| 22   | 893.0 | 4.5    | 0.0 | 6.7   | 2.6  | 1,859.4 | 36.2    | 23.3  | 154.6 | 0.0      | 0.0 | 0.0   | 0.0   | 2,980.4 |
| 23   | 709.8 | 2.8    | 0.0 | 2.8   | 0.7  | 2,073.3 | 38.0    | 17.8  | 166.5 | 0.0      | 1.5 | 0.0   | 0.0   | 3,013.3 |

#### **Solar Units**

Solar units in PJM may be in front of or behind the meter. The data reported include all PJM solar units that are in front of the meter. As shown in Table 8-14, there are 2,185.4 MW capacity of solar registered in GATS that are PJM units. As shown in Table 8-15, there are 6,077.5 MW capacity of solar registered in GATS that are not PJM units. Some behind the meter generation exists in clusters, such as community solar farms, and serves dedicated customers. Such customers may or may not be located at the same node on the transmission system as the solar farm. When behind the meter generation and its associated load are at separate nodes, loads should pay for the appropriate level of transmission service, and should not be permitted to avoid their proper financial responsibility through badly designed rules, such as rules for netting. The MMU recommends that load and generation located at separate nodes be treated as separate resources.

Table 8-28 shows the capacity factor of solar units in PJM. In 2019, the capacity factor of solar units in PJM was 22.4 percent. Solar units that were capacity resources had a capacity factor of 22.8 percent and an installed capacity of 1,549 MW. Solar units that were energy only had a capacity factor of 18.4 percent and an installed capacity of 493 MW. Solar capacity in RPM is derated to 42.0, 60.0 or 38.0 percent of nameplate capacity for the capacity market, based on the installation type, and energy only resources are not included in the capacity market. 172

Table 8-28 Capacity factor of solar units in PJM: 2019

| Type of Resource     | Capacity Factor | Installed Capacity (MW) |
|----------------------|-----------------|-------------------------|
| Energy-Only Resource | 18.4%           | 493                     |
| Capacity Resource    | 22.8%           | 1,549                   |
| All Units            | 22.4%           | 2,042                   |

Figure 8-21 shows the average hourly real-time generation of solar units in PJM, by month. The hour with the highest peak average output, 1,154 MW, occurred in July, and the hour with the lowest peak average output, 624 MW, occurred in January. Solar output in PJM is generally higher during peak hours and lower during off peak hours.

<sup>172</sup> PJM. Class Average Capacity Factors, <a href="https://www.pjm.com/-/media/planning/res-adeq/class-average-wind-capacity-factors.ashx?la=en">https://www.pjm.com/-/media/planning/res-adeq/class-average-wind-capacity-factors.ashx?la=en</a> (Accessed October 17, 2019).

Figure 8-21 Average hourly real-time generation of solar units in PJM: 2019

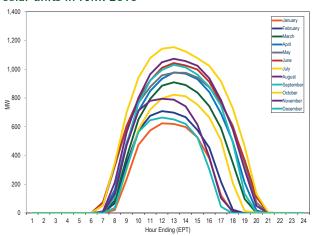
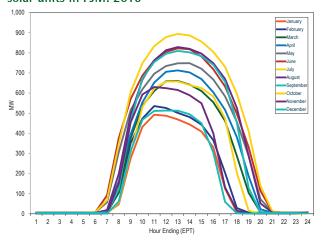



Table 8-29 shows the generation and capacity factor of solar units by month from January 1, 2018, through December 31, 2019.


Table 8-29 Capacity factor of solar units in PJM by month: January 2018 through December 2019

|           | 2018        | 2019     |             |          |  |
|-----------|-------------|----------|-------------|----------|--|
|           | Generation  | Capacity | Generation  | Capacity |  |
| Month     | (MWh)       | Factor   | (MWh)       | Factor   |  |
| MOTH      | (IVIVVII)   | ractor   |             | Tactor   |  |
| January   | 102,536.6   | 15.4%    | 119,611.7   | 14.4%    |  |
| February  | 90,692.2    | 14.2%    | 128,444.0   | 16.4%    |  |
| March     | 159,958.1   | 22.4%    | 206,596.8   | 23.3%    |  |
| April     | 202,174.6   | 28.1%    | 231,659.0   | 26.7%    |  |
| May       | 203,790.7   | 27.3%    | 267,686.0   | 28.9%    |  |
| June      | 223,066.7   | 30.6%    | 267,383.2   | 29.2%    |  |
| July      | 221,508.3   | 29.5%    | 315,951.4   | 31.8%    |  |
| August    | 218,522.6   | 28.9%    | 272,370.5   | 27.6%    |  |
| September | 143,181.8   | 20.9%    | 239,680.3   | 25.4%    |  |
| October   | 156,543.4   | 21.3%    | 181,257.4   | 18.6%    |  |
| November  | 114,425.8   | 15.3%    | 154,251.9   | 16.7%    |  |
| December  | 96,864.3    | 12.6%    | 119,195.8   | 12.6%    |  |
| Annual    | 1,933,264.9 | 22.3%    | 2,504,088.0 | 22.8%    |  |

Solar units that are capacity resources are required, like all capacity resources except demand resources, to offer the energy associated with their cleared capacity in the Day-Ahead Energy Market and in the Real-Time Energy Market. Figure 8-22 shows the average hourly day-ahead generation offers of solar units in PJM, by month.173

173 The average day-ahead generation of solar units in PJM is greater than 0 for hours when the sun is down due to some solar units being paired with landfill units.

Figure 8-22 Average hourly day-ahead generation of solar units in PJM: 2019

