Environmental and Renewable Energy Regulations

Environmental requirements and renewable energy mandates have a significant impact on PJM markets.

At the federal level, the Mercury and Air Toxics Standards Rule (MATS) requires significant investments for some fossil fuel fired power plants in the PJM footprint in order to reduce heavy metal emissions. The EPA has promulgated intrastate and interstate air quality standards and associated emissions limits for states. The Cross-State Air Pollution Rule (CSAPR) will require investments for some fossil fuel fired power plants in the PJM footprint in order to reduce SO₂ and NO_x emissions.

State regulations and multi-state agreements have an impact on PJM markets. New Jersey's high electric demand day (HEDD) rule limits NO_x emissions on peak energy demand days and requires investments for noncompliant units. CO_2 costs resulting from the Regional Greenhouse Gas Initiative (RGGI) affect some unit offers in the PJM energy market.

The investments required for environmental compliance have resulted in higher offers in the Capacity Market, and when units do not clear, in the retirement of units. Federal and state renewable energy mandates and associated incentives have resulted in the construction of substantial amounts of renewable capacity in the PJM footprint, especially wind and solar powered resources. Renewable energy credit (REC) markets created by state programs and federal tax credits have significant impacts on PJM wholesale markets.

Overview

Federal Environmental Regulation

• EPA Mercury and Air Toxics Standards Rule. On December 16, 2011, the U.S. Environmental Protection Agency (EPA) issued its Mercury and Air Toxics Standards rule (MATS), which applies the Clean Air Act (CAA) maximum achievable control technology (MACT) requirement to new or modified sources of emissions of mercury and arsenic, acid gas, nickel, selenium and cyanide.¹ The rule established a compliance deadline of April 16, 2015.

In a related EPA rule also issued on December 16, 2011, regarding utility New Source Performance Standards (NSPS), the EPA requires new coal and oil fired electric utility generating units constructed after May 3, 2011, to comply with amended emission standards for SO_2 , NO_x and filterable particulate matter (PM).

On June 29, 2015, the U.S. Supreme Court remanded MATS to the D.C. Circuit Court and ordered the EPA to consider cost earlier in the process when making the decision whether to regulate power plants under MATS.² On December 15, 2015, the D.C. Circuit Court remanded the matter to EPA while keeping the rule effective, noting that the "EPA has represented that it is on track to issue a final finding ... by April 15, 2016."³

• Air Quality Standards (NO_x and SO₂ Emissions). The CAA requires each state to attain and maintain compliance with fine PM and ozone national ambient air quality standards (NAAQS). Much recent regulatory activity concerning emissions has concerned the development and implementation of a transport rule to address the CAA's requirement that each state prohibit emissions that significantly interfere with the ability of another state to meet NAAQS.⁴

On April 29, 2014, the U.S. Supreme Court upheld the EPA's Cross-State Air Pollution Rule (CSAPR) and on October 23, 2014, the U.S. Court of Appeals for the District of Columbia Circuit lifted the stay imposed on CSAPR, clearing the way for the EPA to implement this rule and to replace the Clean Air Interstate Rule (CAIR).^{5,6}

In the same decision, the U.S. Supreme Court remanded "particularized as-applied challenge[s]" to the EPA's 2014 emissions budgets.⁷ On July 28, 2015, on remand, the U.S. Court of Appeals for the

National Emission Standards for Hazardous Air Pollutants From Coal and Oil-Fired Electric Utility Steam Generating Units and Standards of Performance for Fossil Fuel Fired Electric Utility, Industrial-Commercial-Institutional, and Small Industrial-Commercial-Institutional Steam Generating Units, EPA Docket No. EPA-HQ-OAR-2009-0234, 77 Fed. Reg. 9304 (February 16, 2012).

² Michigan et al. v. EPA, Slip Op. No. 14-46.

³ White Stallion Energy Center, LLC v EPA, Slip Op. No. 12-1100 (D.C. Cir. 2015) (per curiam).

CAA § 110(a)(2)(D)(i)(I).

⁵ See EPA et al. v. EME Homer City Generation, L.P. et al., 134 S. Ct. 1584 (2014), *reversing* 696 F.3d 7 (D.C. Cir. 2012).

See EME Homer City Generation, L.P. v EPA et al., No. 11-1302.
 134 S. Ct. at 1609.

District of Columbia Circuit invalidated the 2014 SO₂ budgets for a number of states, including PJM states Maryland, New Jersey, North Carolina, Ohio, Pennsylvania, Virginia and West Virginia.8 The court directed the EPA to reconsider the 2015 emissions budgets for these states based on the actual amount of reduced emissions that states in upwind states needed to attain in order to bring each downwind state into attainment.9 Under the invalidated approach, the EPA calculated how much pollution each upwind state could eliminate if all of its sources applied pollution control at particular cost thresholds.¹⁰ A new approach likely will significantly reduce the emission budgets (lower emissions levels will be allowed) for the indicated states. The court did not vacate the currently assigned budgets which remain effective until replaced.¹¹

On November 21, 2014, the EPA issued a rule tolling by three years CSAPR's original deadlines. The rule means that compliance with CSAPR's Phase 1 emissions budgets is now required in 2015 and 2016 and CSAPR's Phase 2 emissions in 2017 and beyond.12

 National Emission Standards for Reciprocating Internal Combustion Engines. On May 1, 2015, the U.S. Court of Appeals for the District of Columbia Circuit reversed the portion of the final rule exempting 100 hours of run time for certain stationary reciprocating internal combustion engines (RICE) participating in emergency demand response programs.¹³ As a result, the national emissions standards uniformly apply to all RICE.¹⁴ The Court held that "EPA acted arbitrarily and capriciously when it modified the National Emissions Standards and the Performance Standards to allow backup generators to operate without emissions controls for up to 100 hours per year as part of an emergency demand-response program."15 Specifically, the Court found that the EPA failed to consider arguments concerning the rule's "impact on the efficiency and reliability of the energy grid," including arguments raised by the **MMU**.¹⁶

- Greenhouse Gas Emissions Rule. On August 3, 2015, the EPA issued a final rule for regulating CO₂ from certain existing power generation facilities titled Carbon Pollution Emission Guidelines for Existing Stationary Sources: Electric Utility Generating Units (the Clean Power Plan).17 The rule requires that individual state plans be submitted by September 6, 2016. However, on February 9, 2016, the U.S. Supreme Court issued a stay on the rule that will prevent its taking effect until judicial review is completed.18
- Cooling Water Intakes. The EPA has promulgated a rule implementing Section 316(b) of the Clean Water Act (CWA), which requires that cooling water intake structures reflect the best technology available for minimizing adverse environmental impacts.¹⁹ The rule is implemented as National Pollutant Discharge Elimination System (NPDES) permits are issued, with exceptions in certain cases for permits expiring prior to July 14, 2018.
- Waste Disposal. On December 19, 2014, the EPA issued its Coal Combustion Residuals rule (CCRR), effective October 19, 2015. The CCRR likely will raise the costs of disposal of CCRs to meet the EPA criteria.

State Environmental Regulation

• NJ High Electric Demand Day (HEDD) Rule. New Jersey addressed the issue of NO_x emissions on peak energy demand days with a rule that defines peak energy usage days, referred to as high electric demand days or HEDD, and imposes operational restrictions and emissions control requirements on units responsible for significant NO_x emissions on such high energy demand days.²⁰ New Jersey's HEDD rule, which became effective May 19, 2009, applies to HEDD units, which include units that

⁸ EME Homer City Generation , L.P. v EPA et al., Slip Op. No. 11-1302 (July 28, 2015).

⁹ Id. at 11-12. 10 Id. at 11.

¹¹ Emissions Budget Decision at 24-25.

¹² Rulemaking to Amend Dates in Federal Implementation Plans Addressing Interstate Transport of Ozone and Fine Particulate Matter, EPA-HQ-OAR-2009-0491 (Nov. 21, 2014).

¹³ Delaware Department of Natural Resources and Environmental Control (DENREC) v. EPA, Slip Op. No. 13-1093; National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines, Final Rule, EPA Docket No. EPA-HQ-OAR-2008-0708, 78 Fed. Reg. 9403 (January 30, 2013).

¹⁵ DENREC v. EPA at 3, 20-21.

¹⁶ Id. at 22, citing Comments of the Independent Market Monitor for PJM, EPA Docket No. EPA-HQ-OAR-2008-0708 (August 9, 2012) at 2.

¹⁷ Carbon Pollution Emission Guidelines for Existing Stationary Sources: Electric Utility Generating Units, EPA-HQ-OAR-2013-0602, Final Rule mimeo (August 3, 2015), also known as the "Clean Power Plan.

¹⁸ North Dakota v. EPA, et al., Order 15A793.

¹⁹ See EPA, National Pollutant Discharge Elimination System—Final Regulations to Establish Requirements for Cooling Water Intake Structures at Existing Facilities and Amend Requirements at Phase I Facilities, EPA-HQ-OW-2008-0667, 79 Fed. Reg. 48300 (Aug. 15, 2014).

²⁰ N.J.A.C. § 7:27-19.

have a NO_x emissions rate on HEDD equal to or exceeding 0.15 lbs/MMBtu and lack identified emission control technologies.²¹

- Illinois Air Quality Standards (NO_x , SO_2 and Hg). The State of Illinois has promulgated its own standards for NO_x , SO_2 and Hg (mercury) known as Multi-Pollutant Standards ("MPS") and Combined Pollutants Standards ("CPS").²² MPS and CPS establish standards that are more stringent and take effect earlier than comparable Federal regulations, such as the EPA MATS rule.
- Regional Greenhouse Gas Initiative (RGGI). The Regional Greenhouse Gas Initiative (RGGI) is a cooperative effort by Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New York, Rhode Island, and Vermont to cap CO₂ emissions from power generation facilities and facilitate trading of emissions allowances. Auction prices in 2015 for the 2015-2017 compliance period were \$7.50 per ton. The clearing price is equivalent to a price of \$8.27 per metric tonne, the unit used in other carbon markets.

Emissions Controls in PJM Markets

Environmental regulations affect decisions about emission control investments in existing units, investment in new units and decisions to retire units lacking emission controls. As a result of environmental regulations and agreements to limit emissions, many PJM units burning fossil fuels have installed emission control technology. On December 31, 2015, 76.7 percent of coal steam MW had some type of FGD (flue-gas desulfurization) technology to reduce SO₂ emissions, while 99.5 percent of coal steam MW had some type of particulate control, and 92.8 percent of fossil fuel fired capacity in PJM had NO_x emission control technology.

State Renewable Portfolio Standards

Many PJM jurisdictions have enacted legislation to require that a defined percentage of retail suppliers' load be served by renewable resources, for which there are many standards and definitions. These are typically known as renewable portfolio standards, or RPS. As of December 31, 2015, Delaware, Illinois, Maryland, Michigan, New Jersey, North Carolina, Ohio, Pennsylvania, and Washington D.C. had renewable portfolio standards. Virginia and Indiana have enacted voluntary renewable portfolio standards. Kentucky and Tennessee have not enacted renewable portfolio standards. Ohio delayed a scheduled increase from 2.5 percent to 3.5 percent in its RPS standards from 2015 until 2017 and removed the 12.5 percent alternative energy requirement. Ohio currently has an ongoing Ohio Energy Mandates Study Committee that is discussing the costs and benefits of the RPS as outlined in Senate Bill 310.²³ West Virginia had a voluntary standard, but the state Legislature repealed the West Virginia renewable portfolio standard on January 22, 2015.

Conclusion

Environmental requirements and renewable energy mandates at both the federal and state levels have a significant impact on the cost of energy and capacity in PJM markets. Attempts to extend the definition of renewable energy to include nuclear power in order to provide subsidies to nuclear power could increase this impact if successful. Renewable energy credit markets are markets related to the production and purchase of wholesale power, but FERC has determined that RECs are not regulated under the Federal Power Act unless the REC is sold as part of a transaction that also includes a wholesale sale of electric energy in a bundled transaction.²⁴

Renewable energy credits (RECs), federal investment tax credits and federal production tax credits provide out of market payments to qualifying resources, primarily wind and solar, which create an incentive to generate MWh until the LMP is equal to the marginal cost of producing power minus the credit received for each MWh. The credits provide an incentive to make negative energy offers and more generally provide an incentive to operate whenever possible. These subsidies affect the offer behavior and the operational behavior of these resources in PJM markets and thus the market prices and the mix of clearing resources.

²¹ CTs must have either water injection or selective catalytic reduction (SCR) controls; steam units must have either an SCR or selective non-catalytic reduction (SNCR).

^{22 35} III. Admin. Code §§ 225.233 (Multi-Pollutant Standard (MPS)), 224.295 (Combined Pollutant Standard: Emissions Standards for NO_v and SO_v (CPS)).

²³ See Ohio Senate Bill 310.

²⁴ See 139 FERC § 61,061 at PP 18, 22 (2012) ("[W]e conclude that unbundled REC transactions fall outside of the Commission's jurisdiction under sections 201, 205 and 206 of the FPA. We further conclude that bundled REC transactions fall within the Commission's jurisdiction under sections 201, 205 and 206 of the FPA... [A]Ithough a transaction may not directly involve the transmission or sale of electric energy, the transaction could still fall under the Commission's jurisdiction because it is "in connection with" or "affects" jurisdictional returns or charges.").

RECs clearly affect prices in the PJM wholesale power market. Some resources are not economic except for the ability to purchase or sell RECs. REC markets are not transparent. Data on REC prices and markets are not publicly available for all PJM states. RECs markets are, as an economic fact, integrated with PJM markets including energy and Capacity markets, but are not formally recognized as part of PJM markets.

PJM markets provide a flexible mechanism for incorporating the costs of environmental controls and meeting environmental requirements in a cost effective manner. Costs for environmental controls are part of bids for capacity resources in the PJM Capacity Market. The costs of emissions credits are included in energy offers. PJM markets also provide a flexible mechanism that incorporates renewable resources and the impacts of renewable energy credit markets, and ensure that renewable resources have access to a broad market. PJM markets provide efficient price signals that permit valuation of resources with very different characteristics when they provide the same product.

PJM markets could also provide a flexible mechanism for states to comply with the EPA's Clean Power Plan, for example by incorporating a carbon price in unit offers which would be reflected in PJM's economic dispatch. The imposition of specific and prescriptive environmental dispatch rules would, in contrast, pose a threat to economic dispatch and create very difficult market power monitoring and mitigation issues.

Federal Environmental Regulation

The U.S. Environmental Protection Agency (EPA) administers the Clean Air Act (CAA), which, among other things, comprehensively regulates air emissions by establishing acceptable levels of and regulating emissions of hazardous air pollutants. The EPA issues technology based standards for major sources and certain area sources of emissions.^{25,26} The EPA actions have and will continue to affect the cost to build and operate generating units in PJM, which in turn affects wholesale energy prices and capacity prices.

The EPA also regulates water pollution, and its regulation of cooling water intakes under section 316(b) of the Clean Water Act (CWA) affects generating plants that rely on water drawn from jurisdictional water bodies.²⁷

Control of Mercury and Other Hazardous Air Pollutants

Section 112 of the CAA requires the EPA to promulgate emissions control standards, known as the National Emission Standards for Hazardous Air Pollutants (NESHAP), from both new and existing area and major sources.

On December 21, 2011, the U.S. Environmental Protection Agency (EPA) issued its Mercury and Air Toxics Standards rule (MATS), which applies the Clean Air Act (CAA) maximum achievable control technology (MACT) requirement to new or modified sources of emissions of mercury and arsenic, acid gas, nickel, selenium and cyanide.²⁸ The rule establishes a compliance deadline of April 16, 2015.

In a related EPA rule also issued on December 16, 2011, regarding utility New Source Performance Standards (NSPS), the EPA requires new coal and oil fired electric utility generating units constructed after May 3, 2011, to comply with amended emission standards for SO_2 , NO_x and filterable particulate matter (PM).²⁹

On June 29, 2015, the U.S. Supreme Court remanded MATS to the D.C. Circuit Court and ordered the EPA to consider cost earlier in the process when making the decision whether to regulate power plants under MATS.³⁰ On November 20, 2015, the EPA proposed a rule with a supplemental finding that considering costs does not alter the determination that the MATS rule is appropriate.³¹ If finalized, this action would supply the initial cost determination that the U.S. Supreme Court found lacking, and which was the sole basis for remand.

^{25 42} U.S.C. § 7401 et seq. (2000).

²⁶ The EPA defines "major sources" as a stationary source or group of stationary sources that emit or have the potential to emit 10 tons per year or more of a hazardous air pollutant or 25 tons per year or more of a combination of hazardous air pollutants. An "area source" is any stationary source that is not a major source.

²⁷ The CWA applies to "navigable waters," which are, in turn, defined to include the "waters of the United States, including territorial seas." 33 U.S.C. 51 352(7). An interpretation of this rule has created some uncertainty on the scope of the waters subject to EPA jurisdiction, (see Rapanos v. U.S., et al., 547 U.S. 715 (2006)), which the EPA continues to attempt to resolve.

²⁸ National Emission Standards for Hazardous Air Pollutants From Coal and Oil-Fired Electric Utility, Steam Generating Units and Standards of Performance for Fossil Fuel Fired Electric Utility, Industrial-Commercial-Institutional, and Small Industrial-Commercial-Institutional Steam Generating Units, EPA Docket No. EPA-HQ-OAR-2009-0234, 77 Fed. Reg. 9304 (February 16, 2012); aff'd, White Stallion Energy Center, LLC v EPA, No. 12-1100 (D.C. Cir. April 15, 2014).

²⁹ NSPS are promulgated under CAA § 111.

³⁰ Michigan et al. v. EPA, Slip Op. No. 14-46.

³¹ Supplemental Finding That It Is Appropriate and Necessary To Regulate Hazardous Air Pollutants From Coal- and Oil-Fired Electric Utility Steam Generating Units, EPA Docket No. EPA-HQ-OAR-2009-0234, 80 Fed. Reg. 75025 (Dec. 1, 2015).

On December 15, 2015, the D.C. Circuit Court remanded the matter to the EPA while keeping the rule effective, noting that "EPA has represented that it is on track to issue a final finding ... by April 15, 2016."³²

Air Quality Standards: Control of NO_x, SO₂ and O₃ Emissions Allowances

The CAA requires each state to attain and maintain compliance with fine particulate matter and ozone national ambient air quality standards (NAAQS). Under NAAQS, the EPA establishes emission standards for six air pollutants, including NO_x , SO_2 , O_3 at ground level, PM, CO, and Pb, and approves state plans to implement these standards, known as State Implementation Plans (SIPs).³³ Standards for each pollutant are set and periodically revised, most recently for SO₂ in 2010, and SIPS are filed, approved and periodically revised accordingly.

Much recent regulatory activity related to these emissions has concerned the development and implementation of a transport rule to address the CAA's requirement that each state prohibit emissions that significantly interfere with the ability of another state to meet NAAQS.³⁴

The EPA finalized the CSAPR on July 6, 2011. CSAPR requires specific states in the eastern and central United States to reduce power plant emissions of SO_2 and NO_x that cross state lines and contribute to ozone and fine particle pollution in other states, to levels consistent with the 1997 ozone and fine particle and 2006 fine particle NAAQS.³⁵ The CSAPR covers 28 states, including all of the PJM states except Delaware, and also excluding the District of Columbia.³⁶

CSAPR establishes two groups of states with separate requirements standards. Group 1 includes a core region comprised of 21 states, including all of the PJM states except Delaware, and also excluding the District of Columbia.³⁷ Group 2 does not include any states in the

PJM region.³⁸ Group 1 states must reduce both annual SO_2 and NO_x emissions to help downwind areas attain the 24-Hour and/or Annual Fine Particulate Matter³⁹ NAAQS and to reduce ozone season NO_x emissions to help downwind areas attain the 1997 8-Hour Ozone NAAQS.

Under the original timetable for implementation, Phase 1 emission reductions were expected to become effective starting January 1, 2012, for SO₂ and annual NO_{y} reductions and May 1, 2012, for ozone season NO_{y} reductions. CSAPR requires reductions of emissions for each state below certain assurance levels, established separately for each emission type. Assurance levels are the state budget for each type of emission, determined by the sum of unit-level allowances assigned to each unit located in such state, plus a variability limit, which is meant to account for the inherent variability in the state's yearly baseline emissions. Because allowances are allocated only up to the state emissions budget, any level of emissions in a state above its budget must be covered by allowances obtained through trading for unused allowances allocated to units located in other states included in the same group.

The rule provides for implementation of a trading program for states in the CSAPR region. Sources in each state may achieve those limits as they prefer, including unlimited trading of emissions allowances among power plants within the same state and limited trading of emission allowances among power plants in different states in the same group. Thus, units in PJM states may only trade and use allowances originating in Group 1 states.

If state emissions exceed the applicable assurance level, including the variability limit, a penalty would be assessed that is allocated to resources within the state in proportion to their responsibility for the excess. The penalty would be a requirement to surrender two additional allowances for each allowance needed to the cover the excess.

On April 29, 2014, the U.S. Supreme Court upheld the EPA's Cross-State Air Pollution Rule (CSAPR), clearing

³² White Stallion Energy Center, LLC v EPA, Slip Op. No. 12-1100 (D.C. Cir. 2015) (per curiam),

³³ Nitric Oxides (NO₂), Sulfur Dioxide (SO₂), Ozone (O3), Particulate Matter (PM), Carbon Monoxide (CO) and Lead (Pb).

³⁴ CAA § 110(a)(2)(D)(i)(I).

³⁵ Federal Implementation Plans: Interstate Transport of Fine Particulate Matter and Ozone and Correction of SIP Approvals, Final Rule, Docket No. EPA-HO-OAR-2009-0491, 76 Fed. Reg. 48208 (August 8, 2011) ("CSAPR"); Revisions to Federal Implementation Plans To Reduce Interstate Transport of Fine Particulate Matter and Ozone, Final Rule, Docket No. EPA-HO-2009-0491, 77 Fed. Reg. 10342 (February 21, 2012) ("CSAPR II").

³⁶ *Id*.

³⁷ Group 1 states include: New York, Pennsylvania, New Jersey, Maryland, Virginia, West Virginia, North Carolina, Tennessee, Kentucky, Ohio, Indiana, Illinois, Missouri, Iowa, Wisconsin, and Michigan.

³⁸ Group 2 states include: Minnesota, Nebraska, Kansas, Texas, Alabama, Georgia and South Carolina. 39 The EPA defines Particulate Matter (PM) as "[a] complex mixture of extremely small particles and liquid droplets. It is made up of a number of components, including acids (such as nitrates and sulfates), organic chemicals, metals, and soil or dust particles." Fine PM (PM_{2.5}) measures less than 2.5 microns across.

the way for the EPA to implement this rule and to replace the Clean Air Interstate Rule (CAIR).⁴⁰

In the same decision, the U.S. Supreme Court remanded "particularized as-applied challenge[s]," to the EPA's 2014 emissions budgets.⁴¹ On July 28, 2015, on remand, the U.S. Court of Appeals for the District of Columbia Circuit invalidated the 2014 SO₂ budgets for a number of states, including PJM states Maryland, New Jersey, North Carolina, Ohio, Pennsylvania, Virginia and West Virginia.42 The court directed the EPA to reconsider the 2015 emissions budgets for these states based on the actual amount of reduced emissions that states in upwind states needed to attain in order to bring each downwind state into attainment.⁴³ Under the invalidated approach, the EPA calculated how much pollution each upwind state could eliminate if all of its sources applied pollution control at particular cost thresholds.⁴⁴ A new approach likely will significantly reduce the emission budgets (lower emissions levels will be allowed) for the indicated states. The court did not vacate the currently assigned emissions budgets, which remain effective until replaced.45

Table 8–1 Current and Proposed CSPAR Ozone Season NO_x Budgets for Electric Generating Units (before accounting for variability)⁴⁶

reflect the decrease to the ozone season NAAQS that occurred in 2008 ("CSPAR Update NOPR").⁴⁷ The CSAPR had been finalized in 2011 based on the 1997 ozone season NAAQS. The 2008 ozone season NO_x emissions level was lowered to 0.075 ppm from 0.08 in 1997.⁴⁸ The CSAPR Update NOPR would increase the reductions required from upwind states to assist downwind states' ability to meet the lower 2008 standard.

Starting May 1, 2017, the CSPAR Update NOPR would reduce summertime NO_x from power plants in certain PJM states: Illinois, Indiana, Kentucky, Maryland, Michigan, New Jersey, North Carolina, Ohio, Pennsylvania, Tennessee, Virginia and West Virginia.⁴⁹ Table 8-1 shows the reduced NO_x emissions budgets for each PJM affected state. Table 8-1 also shows the assurance level, which is a hard cap on emissions, meaning that emissions above the assurance cannot be covered by emissions allowances, even if available.

During the delay of CSAPR implementation from 2012–2015, the EPA estimates that banked emissions allowances "could be in excess of 210,000 tons by the start of the 2017 ozone-season compliance period."⁵⁰ The EPA is concerned that "unrestricted use of the bank ... could allow emissions to exceed the state budgets,

	Current CSPAR Ozone Season NO _x Budget	Proposed Updated CSPAR Ozone Season		
	for Electric Generating Units	NO _x Budget for Electric Generating Units	Percent	Assurance
State	(before accounting for variability) (Tons)	(before accounting for variability) (Tons)	Change	Level (Tons)
Illinois	21,208	12,078	(43.0%)	14,614
Indiana	46,175	28,284	(38.7%)	34,224
Kentucky	32,674	21,519	(34.1%)	26,038
Maryland	7,179	4,026	(43.9%)	4,871
Michigan	24,727	19,115	(22.7%)	23,129
New Jersey	3,382	2,015	(40.4%)	2,438
North Carolina	18,455	12,275	(33.5%)	14,853
Ohio	37,792	16,660	(55.9%)	20,159
Pennsylvania	51,912	14,387	(72.3%)	17,408
Tennessee	8,016	5,481	(31.6%)	6,632
Virginia	14,452	6,818	(52.8%)	8,250
West Virginia	23,291	13,390	(42.5%)	16,202

On November 16, 2015, the EPA proposed a rule updating the CSAPR ozone season NO_x emissions program to

⁴⁰ See EPA et al. v. EME Homer City Generation, LP. et al., 134 S. Ct. 1584 (2014). Some issues, involving what the EPA characterizes as EPA "technical and scientific judgments" continue to require resolution by the courts. See Respondents' Motion To Lift The Stay Entered On December 30, 2011, USCA for the Dist. of Columbia Circuit No. 11–1302, et al. (June 26, 2014) at 9–10 ("EPA Motion to Lift Stay). On October 23, 2014, the U.S. Court of Appeals for the District of Columbia Circuit granted the EPA's motion.

^{41 134} S. Ct. at 1609

⁴² EME Homer City Generation, L.P. v EPA et al., Slip Op. No. 11-1302 (July 28, 2015).

⁴³ Id. at 11-12.

⁴⁴ *Id.* at 11.

⁴⁵ Emissions Budget Decision at 24-25.

⁴⁶ CSAPR at 48270; CSAPR Supp.at 40666; CSAPR Update NOPR at 75745.

⁴⁸ Federal Implementation Plans to Reduce Interstate Transport of Fine Particulate Matter and Ozone, NOPR, EPA-HQ-OAR-2009-0491, 75 Fed. Reg. 45210, 45220 (Aug. 2, 2010).

⁴⁹ *Id.* at 75742. 50 CSAPR Update NOPR at 75746.

up to the assurance level [an annual cap on use of allowances], year after year."⁵¹ EPA does not propose to address excess allowances by reducing state emissions budgets. Instead, EPA proposes a greater than 1-to-1 surrender ratio for allowances.⁵² The analysis in the CSPAR Update Rule assumes a 4-to-1 surrender ratio, but the ratio may differ in the final rule.⁵³

On November 21, 2014, the EPA issued a rule tolling by three years CSAPR's original deadlines. Compliance with CSAPR's Phase 1 emissions budgets is now required in 2015 and 2016 and CSAPR's Phase 2 emissions in 2017 and beyond.⁵⁴

Emission Standards for Reciprocating Internal Combustion Engines

On January 14, 2013, the EPA signed a final rule regulating emissions from a wide variety of stationary reciprocating internal combustion engines (RICE).⁵⁵ RICE include certain types of electrical generation facilities like diesel engines typically used for backup, emergency or supplemental power. RICE include facilities located behind the meter. These rules include: National Emission Standard for Hazardous Air Pollutants (NESHAP) for Reciprocating Internal Combustion Engines (RICE); New Source Performance Standards (NSPS) of Performance for Stationary Spark Ignition Internal Combustion Engines; and Standards of Performance for Stationary Compression Ignition Internal Combustion Engines (collectively "RICE Rules").⁵⁶

The RICE Rules apply to emissions such as formaldehyde, acrolein, acetaldehyde, methanol, CO, NO_x , volatile organic compounds (VOCs) and PM. The regulatory regime for RICE is complicated, and the applicable requirements turn on whether the engine is an "area

source" or "major source," and the starter mechanism for the engine (compression ignition or spark ignition).⁵⁷

On May 22, 2012, the EPA proposed amendments to the RICE NESHAP Rule.⁵⁸ The proposed rule allowed owners and operators of emergency stationary internal combustion engines to operate them in emergency conditions, as defined in those regulations, as part of an emergency demand response program for 100 hours per year or the minimum hours required by an Independent System Operator's tariff, whichever is less. The exempted emergency demand response programs included demand resources in RPM.⁵⁹

On December 24, 2013, PJM filed revisions to the rules providing for a PJM Pre-Emergency Load Response Program that allows PJM to dispatch resources participating in the program with no prerequisite for system emergency conditions.⁶⁰ PJM retained the PJM Emergency Load Response Program (ELRP), but proposed to restrict participation in the ELRP to DR based on "generation that is behind the meter and has strict environmental restrictions on when it can operate."61 Such restrictions refer to the EPA's amended RICE NESHAP Rule. The EPA created an exception to and weakened its NESHAP RICE Rule based on arguments that markets such as PJM needed RICE for reliability. PJM created an exception to its rule, which would allow RICE to continue to use the EPA's exception. The MMU protested retention of the emergency program, particularly because it accorded discriminatory preference to resources that have negative consequences for reliability, the markets and the environment.62

By order issued May 9, 2014, the Commission ordered that PJM "either: (i) justify the need for, and scope of, its proposed exemption, including any necessary revisions to its Tariff to ensure that the exemption is properly tailored to the environmental restrictions imposed on

⁵¹ *ld*.

⁵² *Id*.

⁵³ Id. at 75747.

⁵⁴ Rulemaking to Amend Dates in Federal Implementation Plans Addressing Interstate Transport of Ozone and Fine Particulate Matter, EPA-HQ-OAR-2009-0491 (Nov. 21, 2014).

⁵⁵ National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines, Final Rule, EPA Docket No. EPA-H0-OAR-2008-0708, 78 Fed. Reg. 6674 (January 30, 2013) ("Final NESHAP RICE Rule").

⁵⁶ EPA Docket No. EPA-H-OAR-2009-0234 & -2011-0044, codified at 40 CFR Part 63, Subpart ZZZZ; EPA Dockets Nos. EPA-HQ-OAR-2005-0030 & EPA-HQ-OAR-2005-0029, -2010-0295, codified at 40 CFR Part 60 Subpart JJJJ.

⁵⁷ CAA § 112(a) defines "major source" to mean "any stationary source or group of stationary sources located within a contiguous area and under common control that emits or has the potential to emit considering controls, in the aggregate, 10 tons per year or more of any hazardous air pollutant or 25 tons per year or more of any combination of hazardous air pollutants," and "area source" to mean, "any stationary source of hazardous air pollutants that is not a major source."

⁵⁸ National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines, Proposed Rule, EPA Docket No. EPA-HQ-OAR-2008-0708.

⁵⁹ If FERC approves PJM's proposal on this issue in Docket No. ER14-822-000, demand resources that use behind the meter generators will maintain emergency status and not have to curtail during pre-emergency events, unlike other demand resources. This matter remains pending. 60 PJM Tariff filing, FERC Docket No. ER14-822-000 (December 24, 2014).

⁶¹ *ld*. at 8–9.

⁶² Comments, Complaint and Motion to Consolidate of the Independent Market Monitor for PJM, FERC Docket No. ER14-822-000 (January 14, 2014) at 3-6.

these units, or (ii) remove the exemption for behindthe-meter demand response resources from its tariff."⁶³ In its compliance filing, PJM attempted to justify the exception.⁶⁴ An order from the Commission on PJM's compliance filing is now pending.

On May 1, 2015, the U.S. Court of Appeals for the District of Columbia Circuit reversed the portion of the final rule exempting 100 hours of run time for certain stationary reciprocating internal combustion engines (RICE) participating in emergency demand response programs from the otherwise applicable emission standards.⁶⁵ As a result, the national emissions standards uniformly apply to all RICE.⁶⁶ The Court held that the "EPA acted arbitrarily and capriciously when it modified the National Emissions Standards and the Performance Standards to allow backup generators to operate without emissions controls for up to 100 hours per year as part of an emergency demand-response program."67 Specifically, the Court found that the EPA failed to consider arguments concerning the rule's "impact on the efficiency and reliability of the energy grid," including arguments raised by the MMU.68

Regulation of Greenhouse Gas Emissions

The EPA regulates CO_2 as a pollutant using CAA provisions that apply to pollutants not subject to NAAQS.^{69,70}

On September 20, 2013, the EPA proposed national limits on the amount of CO₂ that new power plants would be allowed to emit.^{71,72} The proposed rule includes two limits for fossil fuel fired utility boilers and integrated gasification combined cycle (IGCC) units based on the compliance period selected: 1,100 lb CO₂/MWh gross over a 12 operating month period, or 1,000–1,050 lb CO₂/MWh gross over an 84 operating month (seven year) period. The proposed rule also includes two standards for natural gas fired stationary combustion units based on the size: 1,000 lb CO₂/MWh gross for larger units (> 850 mmBtu/hr), or 1,100 lb CO₂/MWh gross for smaller units (< 850 mmBtu/hr).

On August 3, 2015, the EPA issued a final rule for regulating CO_2 from certain existing power generation facilities titled Carbon Pollution Emission Guidelines for Existing Stationary Sources: Electric Utility Generating Units ("CPE Guidelines" or Clean Power Plan).⁷³ On February 6, 2016, the U.S. Supreme Court issued a stay on the CPE Guidelines that will prevent them from taking effect until judicial review is completed.

States have flexibility to meet the EPA's GHG goals, including through participation in multistate CO_2 credit trading programs. The CPE Guidelines provided that a state must submit an individual final compliance plan by September 6, 2016, or request a two-year extension, including for the purpose of developing a multistate plan. The EPA has begun to develop a federal plan applicable in states that do not submit plans, which the EPA plans to finalize in the summer of 2016.

The CPE Guidelines set state by state rate and mass based CO_2 emissions targets.⁷⁴ States would be required to develop and obtain EPA approval of plans to achieve the interim goals effective 2022 and the final goals effective 2030.⁷⁵ The EPA anticipates that meeting these goals would reduce CO_2 emissions from Electric Generating Units (EGUs) by 2030 to a level 32 percent below the level of emissions in 2005.⁷⁶

⁶³ See 147 FERC ¶ 61,103 at P 41.

⁶⁴ See PJM compliance filing, FERC Docket No. ER14-822-002 (June 2, 2014) at 4-8.

⁶⁵ Delaware Department of Natural Resources and Environmental Control (DENREC) v. EPA, Slip Op. No. 13-1093; National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines, Final Rule, EPA Docket No. EPA-HQ-OAR-2008-0708, 78 Fed. Reg. 9403 (January 30, 2013).

⁶⁶ *Id*.

⁶⁷ DENREC v. EPA at 3, 20-21.

⁶⁸ *Id.* at 22, citing Comments of the Independent Market Monitor for PJM, EPA Docket No. EPA-HQ-OAR-2008-0708 (August 9, 2012) at 2.

⁶⁹ See CAA § 111.

⁷⁰ On April 2, 2007, the U.S. Supreme Court overruled the EPA's determination that it was not authorized to regulate greenhouse gas emissions under the CAA and remanded the matter to the EPA to determine whether greenhouse gases endanger public health and welfare. Massachusetts v. EPA, 549 U.S. 497. On December 7, 2009, the EPA determined that greenhouse gases, including earbon dioxide, methane, nitrous oxide, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride, endanger public health and welfare. See Endangerment and Cause or Contribute Findings for Greenhouse Gases Under Section 202(a) of the Clean Air Act, 74 Fed. Reg. 66496, 66497 (December 15, 2009). In a decision dated June 26, 2012, the U.S. Court of Appeals for the D.C. Circuit upheld the endangerment finding, rejecting challenges brought by industry groups and a number of states. Coalition for Responsible Regulation, Inc, et al. v. EPA, No 09-1322.

⁷¹ Standards of Performance for Greenhouse Gas Emissions from New Stationary Sources: Electric Utility Generating Units, Proposed Rule, EPA-HQ-OAR-2013-0495, 79 Fed. Reg. 1430 (January 8, 2014); The Presidentia Climate Action Plan, Executive Office of the President (June 2013) (Climate Action Plan); Presidential Memorandum-Power Sector Carbon Pollution Standards, Environmental Protection Agency (June 25, 2013); Presidential Memorandum-Power Section Carbon Pollution Standards (June 25, 2013) ('June 25th Presidential Memorandum'). The Climate Action Plan no ba accessed at <a http://www.whitehouse.gov/sites/default/files/image/ president27sclimateactionplan.pdf>.

^{72 79} Fed. Reg. 1352 (January 8, 2014).

⁷³ Carbon Pollution Emission Guidelines for Existing Stationary Sources: Electric Utility Generating Units, EPA-H0-0AR-2013-0602, Final Rule mimeo (August 3, 2015), also known as the "Clean Power Plan."

⁷⁴ *Id.* at 1560.

⁷⁵ *ld*. at 1559

⁷⁶ *ld*. at 34839.

The EPA has calculated rate and mass-based goals based on EGU emissions rates for each state.⁷⁷ The EPA uses three building blocks to calculate state goals.⁷⁸ The EPA calculates emissions as of 2005 from EGUs in each state, and then assumes reduced emissions based on implementation of the building blocks.⁷⁹

To calculate state interim and final goals, the EPA assumes the following building blocks: (i) heat rate improvement of 2.1–3.4 percent (depending upon the region) at affected EGUs; (ii) displacement of generation from lower emitting existing natural gas combined cycle units for reduced generation from higher-emitting affected steam generating units; and (iii) displacement of generation from new zero emitting generating capacity for reduced generation from affected fossil fuel-fired generating units.⁸⁰

The interim and final targets for CO_2 emissions goals for PJM states, in order of highest to lowest, are included in Table 8-2.

Table 8-2 Interim and final targets for CO₂ emissions goals for PJM states⁸¹

The essence of the approach is that the baseline is set by the current opportunity in a state to achieve additional CO_2 emissions reductions. No credit is given for prior steps that states have taken, some more than others, to achieve CO_2 emissions reductions.

Each state would be required to develop an EPA approved plan to meet its interim and final goals.⁸³ The CPE Guidelines would not require states to implement the building blocks in their plan, but would require states to meet the goals through an approach included in an EPA-approved plan.

States could implement a state measures approach, which involves a state "adopt[ing] a set of policies and programs, which would not be federally enforceable, except that any standards imposed on affected EGUs would be federally enforceable."⁸⁴ States could choose from market-based trading programs, emissions performance standards, renewable portfolio standards (RPS), energy efficiency resource standards (EERS), and other demand-side energy efficiency programs.⁸⁵

	2020 Interim New	2030 Final New Source	2020 Interim Mass	2030 Final Final
	Source Complements	Complements (Short	Goal (Short Tons	Goal (Short Tons
Jurisdiction	(Short Tons of CO ₂)	Tons of CO ₂)	CO ₂)	CO ₂)
Delaware	78,842	69,561	5,141,711	4,781,386
District of Columbia	NA	NA	NA	NA
Illinois	818,349	722,018	75,619,224	67,119,174
Indiana	939,343	828,769	86,556,407	76,942,604
Kentucky	752,454	663,880	72,065,256	63,790,001
Maryland	170,930	150,809	16,380,325	14,498,436
Michigan	623,651	550,239	53,680,801	48,094,302
New Jersey	313,526	276,619	17,739,906	16,876,364
North Carolina	692,091	610,623	57,678,116	51,876,856
Ohio	949,997	838,170	83,476,510	74,607,975
Pennsylvania	1,257,336	1,109,330	100,588,162	90,931,637
Tennessee	358,838	316,598	32,143,698	28,664,994
Virginia	450,039	397,063	30,030,110	27,830,174
West Virginia	602,940	531,966	58,686,029	51,857,307
Total	8,008,336	7,065,645	689,786,255	617,871,210

The difference in goals reflects different evaluation of state specific factors, referred to as building blocks, including heat rate improvements, dispatch among affected EGUs, expanded use of less carbon-intensive generating capacity and demand-side energy efficiency.⁸²

83 *ld.* 84 *ld.* at 1560.

⁷⁷ A mass-based goal is expressed as maximum number of tons of CO₂ that may be emitted over a time period, while a rate-based goal is expressed as a number of pounds of CO₂ per MWh.

⁷⁸ *ld*. at 1559.

⁷⁹ *Id.* at 1559–1560 80 *Id.* 1559.

The District of Columbia has no affected EGUs and is not subject to the CPE Guidelines (at 1560).
 CPE Guidelines 1559–1560.

The CPE Guidelines recognize that many states have already implemented programs to reduce CO₂ emissions from fossil fuel fired EGUs and specifically highlight the Regional Greenhouse Gas Initiative (RGGI) and California's Global Warming Solutions Act of 2006.⁸⁶ Each of these programs would require significant changes in order to comply with the approach in the CPE Guidelines. The trading rules could remain, but new regional goals and compliance deadlines that equal or exceed the state goals and compliance deadlines set in the CPE Guidelines would be needed. The rules would also take into account that the CPE Guidelines rely on reduced emissions from EGUs to reach state goals and does not count non EGU offsets towards meeting those goals.⁸⁷

The CPE Guidelines permit states to partner and submit multistate plans to reduce CO₂ emissions from EGUs.⁸⁸

Federal Regulation of Environmental Impacts on Water

Section 316(b) of the Clean Water Act (CWA) requires that cooling water intake structures reflect the best technology available (BTA) for minimizing adverse environmental impacts. EPA's rule implementing Section 316(b) requires an existing facility to use BTA to reduce impingement of aquatic organisms (pinned against intake structures) if the facility withdraws 25 percent or more of its cooling water from waters of the United States and has a design intake flow of greater than two million gallons per day (mgd).⁸⁹

Existing facilities withdrawing 125 mgd must conduct studies that may result in a requirement to install sitespecific controls for reducing entrainment of aquatic organisms (drawn into intake structures). If a new generating unit is added to an existing facility, the rule requires addition of BTA that either (i) reduces actual intake flow at the new unit to a level at least commensurate with what can be attained using a closedcycle recirculating system or (ii) reduces entrainment mortality of all stages of aquatic organisms that pass

86 Id. at 1560.

89 See EPA, National Pollutant Discharge Elimination System—Final Regulations to Establish Requirements for Cooling Water Intake Structures at Existing Facilities and Amend Requirements at Phase I Facilities, EPA-HQ-OW-2008-0667, 79 Fed. Reg. 48300 (Aug. 15, 2014). through a sieve with a maximum opening dimension of 0.56 inches to a prescribed level.

Although the rule is now generally effective, it is implemented with respect to particular facilities as National Pollutant Discharge Elimination System (NPDES) permits are issued, with exceptions in certain cases for permits expiring prior to July 14, 2018.

Federal Regulation of Waste Disposal

The EPA administers the Resource Conservation and Recovery Act (RCRA), which governs the disposal of solid and hazardous waste.⁹⁰ Solid waste is regulated under subtitle D, which encourages state management of nonhazardous industrial solid waste and sets nonbinding criteria for solid waste disposal facilities. Subtitle D prohibits open dumping. Subtitle D criteria are not directly enforced by EPA. However, the owners of solid waste disposal facilities are exposed under the act to civil suits, and criteria set by EPA under subtitle D can be expected to influence the outcome of such litigation.

Subtitle C governs the disposal of hazardous waste. Hazardous waste is subject to direct regulatory control by the EPA from the time it is generated until its ultimate disposal.

On December 19, 2014, the EPA issued its Coal Combustion Residuals rule (CCRR) under RCRA, the more lenient subtitle D, effective October 19, 2015.⁹¹ The CCRR sets criteria for the disposal of coal combustion residues (CCRs) produced by electric utilities and independent power producers. CCRs include fly ash (trapped by air filters), bottom ash (scooped out of boilers) and scrubber sludge (filtered using wet limestone scrubbers). These residues are typically stored on site in ponds (surface impoundments) or sent to landfills. In 2012, beneficial use was made of approximately 40 percent of residues, such as in the manufacture of cement, concrete, wallboard and roadbed.⁹²

The CCRR exempts: (i) beneficially used CCRs that are encapsulated (i.e. physically bound into a product); (ii) coal mine filling; (iii) municipal landfills; (iv) landfills

90 42 U.S.C. §§ 6901 et seq.

⁸⁷ Id. at 34910.

⁸⁸ Id. at 1560.

⁹¹ See Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals From Electric Utilities, 80 Fed. Reg. 21302 (April 17, 2015).

⁹² CCRR at 21303.

receiving CCRs before the effective date; (v) surface impoundments closed by the effective date; and (vi) landfills and surface impoundments on the site of generation facilities that deactivate prior to the effective date. Less restrictive criteria may also apply to some surface impoundments deemed inactive under not yet clarified criteria.

Table 8-3 describes the criteria and anticipated implementation dates.

Table 8-3 Minimum Criteria for Existing CCR Ponds (Surface Impoundments) and Landfills and Date by which Implementation is Expected

days or HEDD, and imposes operational restrictions and emissions control requirements on units responsible for significant NO_x emissions on such high energy demand days.⁹³ New Jersey's HEDD rule, which became effective May 19, 2009, applies to HEDD units, which include units that have a NO_x emissions rate on HEDD equal to or exceeding 0.15 lbs/MMBtu and lack identified emission control technologies.⁹⁴ NO_x emissions limits for coal units became effective December 15, 2012.⁹⁵ NO_x emissions limits for other unit types became effective May 1, 2015.⁹⁶

Requirement	Description of requirement to be completed	Implementation Date
Location Restrictions (§ 257.60-§ 257.64)	For Ponds: Complete demonstration for placement above the uppermost aquifer, for wetlands,	October 17, 2018
	fault areas, seismic impact zones and unstable areas.	
	For Landfills: Complete demonstration for unstable areas.	
Design Criteria (§ 257.71)	For Ponds: Document whether CCR unit is either a lined or unlined CCR surface impoundment.	October 17, 2016
Structural Integrity (§ 257.73)	For Ponds: Install permanent marker.	December 17, 2015
	For Ponds: Compile a history of construction, complete initial hazard potential classification	October 17, 2016
	assessment, initial structural stability assessment, and initial safety factor assessment.	
	Prepare emergency action plan.	April 17, 2017
Air Criteria (§ 257.80)	Ponds and Landfills: Prepare fugitive dust control plan.	October 17, 2015
Run-On and Run-Off Controls (§ 257.81)	For Landfills: Prepare initial run-on and run-off control system plan.	October 17, 2016
Hydrologic and Hydraulic Capacity (§ 257.82)	Prepare initial inflow design flood control system plan.	October 17, 2016
Inspections (§ 257.83)	For Ponds and Landfills: Initiate weekly inspections of the CCR unit.	October 17, 2015
	For Ponds: Initiate monthly monitoring of CCR unit instrumentation.	October 17, 2015
	For Ponds and Landfills: Complete the initial annual inspection of the CCR unit.	January 17, 2016
Groundwater Monitoring and Corrective Action	For Ponds and Landfills: Install the groundwater monitoring system; develop the groundwater	October 17, 2017
(§ 257.90–§ 257.98)	sampling and analysis program; initiate the detection monitoring program; and begin evaluating	
	the groundwater monitoring data for statistically significant increases over background levels.	
Closure and Post-Closure Care	For Ponds and Landfills: Prepare written closure and post-closure care plans.	October 17, 2016
(§ 257.103–§ 257.104)		
Recordkeeping, Notification, and Internet	For Ponds and landfills: Conduct required recordkeeping; provide required notifications; establish	October 17, 2015
Requirements	CCR website.	
(§ 257.105-§ 257.107)		

The CCRR likely will raise the costs of disposal of CCRs for the owners of surface impoundments and landfills to meet the EPA criteria.

State Environmental Regulation

New Jersey High Electric Demand Day (HEDD) Rules

The EPA's transport rules apply to total annual and seasonal emissions. Units that run only during peak demand periods have relatively low annual emissions, and have less reason to make such investments under the EPA transport rules.

New Jersey addressed the issue of NO_x emissions on peak energy demand days with a rule that defines peak energy usage days, referred to as high electric demand

95 N.J.A.C. § 7:27-19.4.

96 N.J.A.C. § 7:27-19.5.

⁹³ N.J.A.C. § 7:27-19.

⁹⁴ CTs must have either water injection or selective catalytic reduction (SCR) controls; steam units must have either an SCR or selective non-catalytic reduction (SNCR).

Table 8-4 shows the HEDD emissions limits applicable to each unit type.

Table 8-4 HEDD	maximum	NO _v	emission	rates ⁹⁷
----------------	---------	-----------------	----------	---------------------

Fuel and Unit Type	NO _x Emission Limit (lbs/MWh)
Coal Steam Unit	1.50
Heavier than No. 2 Fuel Oil Steam Unit	2.00
Simple Cycle Gas CT	1.00
Simple Cycle Oil CT	1.60
Combined Cycle Gas CT	0.75
Combined Cycle Oil CT	1.20
Regenerative Cycle Gas CT	0.75
Regenerative Cycle Oil CT	1.20

Illinois Air Quality Standards ($NO_{x'}$ SO₂ and Hg)

The State of Illinois has promulgated its own standards for NO_x , SO_2 and Hg (mercury) known as Multi-Pollutant Standards ("MPS") and Combined Pollutants Standards ("CPS").⁹⁸ MPS and CPS establish standards that are more stringent and take effect earlier than comparable Federal regulations, such as the EPA's MATS.

The Illinois Pollution Control Board has granted variances with conditions for compliance with MPS/CPS for Illinois units included in or potentially included in PJM markets.⁹⁹ In order to obtain variances, companies in PJM agreed to terms with the Illinois Pollution Control Board that resulted in investments in the installation of environmental pollution control equipment at units and deactivation of Illinois units that differ from what would have occurred had only Federal regulations applied.¹⁰⁰

State Regulation of Greenhouse Gas Emissions

RGGI

The Regional Greenhouse Gas Initiative (RGGI) is a cooperative effort by Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New York, Rhode Island, and Vermont to cap CO_2 emissions from power generation facilities.^{101,102} RGGI generates

revenues for the participating states which have spent approximately 62 percent of revenues to date on energy efficiency, 8 percent on clean and renewable energy, 9 percent on greenhouse gas abatements and 15 percent on direct bill assistance.¹⁰³

Table 8-5 shows the RGGI CO₂ auction clearing prices and quantities for the 2009-2011 compliance period auctions, the 2012-2014 compliance period auctions and 2015-2017 compliance period auctions held as of December 31, 2015, in short tons and metric tonnes. Prices for auctions held December 2, 2015, for the 2015-2017 compliance period were at the highest clearing price to date, \$7.50 per allowance (equal to one ton of CO₂), above the current price floor of \$2.05 for RGGI auctions.¹⁰⁴ The RGGI base budget for CO₂ will be reduced by 2.5 percent per year each year from 2015 through 2020. The price increased from the previous high of \$6.02 in September 2015, as the result of a 2.5 percent reduction in the quantity of allowances offered in this auction for the 2015-2017 compliance period. The September 3, 2015, auction included additional Cost Containment Reserves (CCRs) since the clearing price for allowances was above the CCR trigger price of \$6.00 per ton in 2015. The auctions on March 5, 2014, and September 3, 2015, were the only auction to use CRRs.

⁹⁷ Regenerative cycle CTs are combustion turbines that recover heat from their exhaust gases and use that heat to preheat the inlet combustion air which is fed into the combustion turbine.
98 35 III. Admin. Code §§ 225.233 (Multi-Pollutant Standard (MPS)), 224.295 (Combined Pollutant

Standard: Emissions Standards for NO_x and SO_2 (CPS)).

⁹⁹ See, e.g., Midwest Generation, LLC, Opinion and Order of the Board, Docket No. PCB 13-24 (Variance-Air) (April 4, 2013); Midwest Generation, LLC, Opinion and Order of the Board, Docket No. PCB 12-121 (Variance-Air) (August 23, 2012). 100 See *Id*.

¹⁰¹ RGGI provides a link on its website to state statutes and regulations authorizing its activities, which can be accessed at: <<u>http://www.rggi.org/design/regulations</u>>.

¹⁰² For more details see the 2013 State of the Market Report for PJM, Volume 2: Section 8, "Environmental and Renewables."

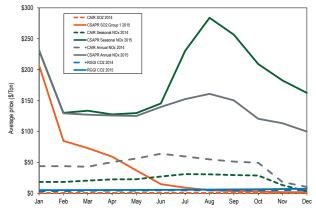
¹⁰³ Investment of RGGI Proceeds Through 2013, The Regional Greenhouse Gas Initiative, April 2015 http://www.rggi.org/docs/ProceedsReport/Investment-RGGI-Proceeds-Through-2013.pdf (Accessed February 24, 2016).

¹⁰⁴ RGGI measures carbon in short tons (short ton equals 2,000 pounds) while world carbon markets measure carbon in metric tonnes (metric tonne equals 1,000 kilograms or 2,204.6 pounds).

Table 8-5 RGGI CO_2 allowance auction prices and quantities in short tons and metric tonnes: 2009-2011, 2012-2014 and 2015-2017 Compliance Periods¹⁰⁵

	Short Tons Metric Tonnes									
	Clearing	Quantity	Quantity	Clearing	Quantity	Quantity				
Auction Date	Price	Offered	Sold	Price	Offered	Sold				
September 25, 2008	\$3.07	12,565,387	12,565,387	\$3.38	11,399,131	11,399,131				
December 17, 2008	\$3.38	31,505,898	31,505,898	\$3.73	28,581,678	28,581,678				
March 18, 2009	\$3.51	31,513,765	31,513,765	\$3.87	28,588,815	28,588,815				
June 17, 2009	\$3.23	30,887,620	30,887,620	\$3.56	28,020,786	28,020,786				
September 9, 2009	\$2.19	28,408,945	28,408,945	\$2.41	25,772,169	25,772,169				
December 2, 2009	\$2.05	28,591,698	28,591,698	\$2.26	25,937,960	25,937,960				
March 10, 2010	\$2.07	40,612,408	40,612,408	\$2.28	36,842,967	36,842,967				
June 9, 2010	\$1.88	40,685,585	40,685,585	\$2.07	36,909,352	36,909,352				
September 10, 2010	\$1.86	45,595,968	34,407,000	\$2.05	41,363,978	31,213,514				
December 1, 2010	\$1.86	43,173,648	24,755,000	\$2.05	39,166,486	22,457,365				
March 9, 2011	\$1.89	41,995,813	41,995,813	\$2.08	38,097,972	38,097,972				
June 8, 2011	\$1.89	42,034,184	12,537,000	\$2.08	38,132,781	11,373,378				
September 7, 2011	\$1.89	42,189,685	7,847,000	\$2.08	38,273,849	7,118,681				
December 7, 2011	\$1.89	42,983,482	27,293,000	\$2.08	38,993,970	24,759,800				
March 14, 2012	\$1.93	34,843,858	21,559,000	\$2.13	31,609,825	19,558,001				
June 6, 2012	\$1.93	36,426,008	20,941,000	\$2.13	33,045,128	18,997,361				
September 5, 2012	\$1.93	37,949,558	24,589,000	\$2.13	34,427,270	22,306,772				
December 5, 2012	\$1.93	37,563,083	19,774,000	\$2.13	34,076,665	17,938,676				
March 13, 2013	\$2.80	37,835,405	37,835,405	\$3.09	34,323,712	34,323,712				
June 5, 2013	\$3.21	38,782,076	38,782,076	\$3.54	35,182,518	35,182,518				
September 4, 2013	\$2.67	38,409,043	38,409,043	\$2.94	34,844,108	34,844,108				
December 4, 2013	\$3.00	38,329,378	38,329,378	\$3.31	34,771,837	34,771,837				
March 5, 2014	\$4.00	23,491,350	23,491,350	\$4.41	21,311,000	21,311,000				
June 4, 2014	\$5.02	18,062,384	18,062,384	\$5.53	16,385,924	16,385,924				
September 3, 2014	\$4.88	17,998,687	17,998,687	\$5.38	16,328,139	16,328,139				
December 3, 2014	\$5.21	18,198,685	18,198,685	\$5.74	16,509,574	16,509,574				
March 11, 2015	\$5.41	15,272,670	15,272,670	\$5.96	13,855,137	13,855,137				
June 3, 2015	\$5.50	15,507,571	15,507,571	\$6.06	14,068,236	14,068,236				
September 3, 2015	\$6.02	25,374,294	25,374,294	\$6.64	23,019,179	23,019,179				
December 2, 2015	\$7.50	15,374,274	15,374,274	\$8.27	13,947,311	13,947,311				

impact on market prices for CAIR emissions allowances and CSAPR emissions allowances.


Figure 8-1 shows average, monthly settled prices for NO_x , CO_2 and SO_2 emissions allowances including CAIR and CSAPR related allowances for 2014 and 2015.¹⁰⁹ Figure 8-1 also shows the average, monthly settled price for the Regional Greenhouse Gas Initiative (RGGI) CO₂ allowances.

Annual and seasonal CAIR NO_x prices decreased in the last three months of 2014. In 2015, CSAPR annual NO_x prices were 207 percent higher than the CAIR annual NO_x prices in 2014. The price difference is due to the new stricter CSAPR rules for emissions compared to the old CAIR rules. The average price of CSAPR SO_2 in 2015 was \$41.78 compared the average price of \$0.72 for CAIR SO_2 in 2014 although the price of CSAPR SO_2 declined substantially between January and September 2014.

CAIR and CSAPR

On April 29, 2014, the U.S. Supreme Court upheld the EPA's Cross-State Air Pollution Rule (CSAPR) and on October 23, 2014, the U.S. Court of Appeals for the District of Columbia Circuit lifted the stay imposed on CSAPR, clearing the way for the EPA to implement this rule and to replace the Clean Air Interstate Rule (CAIR) now in effect.^{106,107} On November 21, 2014, EPA issued a rule requiring compliance with CSAPR's Phase 1 emissions budgets effective January 1, 2015, and 2016 and CSAPR's Phase 2 emissions effective January 1, 2017.¹⁰⁸ The ruling and the EPA rules eliminated CAIR and replaced it with CSAPR and had a corresponding

¹⁰⁹ The NOx prices result from the Clean Air Interstate Rule (CAIR) established by the EPA covering 28 states. The SO₂ prices result from the Acid Rain cap and trade program established by the EPA. The CO₂ prices are from RGGI.

¹⁰⁵ See Regional Greenhouse Gas Initiative, "Auction Results," <http://www.rggi.org/market/ co2_auctions/results> (Accessed January 28, 2016).

¹⁰⁶ See EPA et al. v. EME Homer City Generation, L.P. et al., 134 S. Ct. 1584 (2014), *reversing* 696 F.3d 7 (D.C. Cir. 2012).

¹⁰⁷ Order, City Generation, L.P. EPA et al. v. EME Homer et al., No. 11-1302.

¹⁰⁸ Rulemaking to Amend Dates in Federal Implementation Plans Addressing Interstate Transport of Ozone and Fine Particulate Matter, EPA-HQ-OAR-2009-0491 (Nov. 21, 2014).

¹¹⁰ Spot monthly average emission price information obtained through Evomarkets, http://www.evomarkets.com (Accessed January 29, 2016).

Renewable Portfolio Standards

Many PJM jurisdictions have enacted legislation to require that a defined percentage of retail load be served by renewable resources, for which there are many standards and definitions. These are typically known as renewable portfolio standards, or RPS. As of December 31, 2015, Delaware, Illinois, Maryland, Michigan, New Jersey, North Carolina, Ohio, Pennsylvania, and Washington D.C. had renewable portfolio standards. Virginia and Indiana have enacted voluntary renewable portfolio standards. Kentucky and Tennessee have enacted no renewable portfolio standards. Ohio delayed a scheduled increase from 2.5 percent to 3.5 percent in its RPS standards from 2015 until 2017 and removed the 12.5 percent alternative energy requirement. Ohio currently has an ongoing Ohio Energy Mandates Study Committee that is discussing the costs and benefits of the RPS as outlined in Senate Bill 310.111 West Virginia had a voluntary standard, but the state legislature repealed their renewable portfolio standard on January 27, 2015, effective February 3, 2015.112

Table 8-6 Renewable standards of PJM jurisdictions: 2015 to 2028¹¹³

known as alternative energy credits) when they generate electricity. These RECs are bought by retail suppliers to fulfill the requirements for generation from renewable resources.

Renewable energy credit markets are markets related to the production and purchase of wholesale power, but are not subject to FERC regulation or any other market regulation or oversight. RECs markets are, as an economic fact, integrated with PJM markets including energy and capacity markets, but are not formally recognized as part of PJM markets. Revenues from RECs markets are revenues for PJM resources earned in addition to revenues earned from the sale of the same MWh in PJM markets. The FERC has found that such costs can be appropriately considered in the rates established through the operation of wholesale organized markets.¹¹⁴

Delaware, North Carolina, Michigan and Virginia allow various types of renewable resources to earn multiple RECs per MWh, though typically one REC is equal to one MWh. For example, Delaware provided a three MWh REC for each MWh produced by in-state customer sited

Jurisdiction	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
Delaware	13.00%	14.50%	16.00%	17.50%	19.00%	20.00%	21.00%	22.00%	23.00%	24.00%	25.00%	25.00%	25.00%	25.00%
Illinois	9.00%	10.00%	11.50%	13.00%	14.50%	16.00%	17.50%	19.00%	20.50%	22.00%	23.50%	25.00%	25.00%	25.00%
Indiana	4.00%	4.00%	4.00%	4.00%	7.00%	7.00%	7.00%	7.00%	7.00%	7.00%	10.00%	10.00%	10.00%	10.00%
Kentucky	No Standard													
Maryland	13.00%	15.20%	15.60%	18.30%	17.40%	18.00%	18.70%	20.00%	20.00%	20.00%	20.00%	20.00%	20.00%	20.00%
Michigan	10.00%	10.00%	10.00%	10.00%	10.00%	10.00%	10.00%	10.00%	10.00%	10.00%	10.00%	10.00%	10.00%	10.00%
New Jersey	13.76%	14.90%	15.99%	18.03%	19.97%	21.91%	23.85%	23.94%	24.03%	24.12%	24.21%	24.30%	24.39%	24.48%
North Carolina	6.00%	6.00%	6.00%	10.00%	10.00%	10.00%	12.50%	12.50%	12.50%	12.50%	12.50%	12.50%	12.50%	12.50%
Ohio	2.50%	2.50%	3.50%	4.50%	5.50%	6.50%	7.50%	8.50%	9.50%	10.50%	11.50%	12.50%	12.50%	12.50%
Pennsylvania	11.20%	13.70%	14.20%	14.70%	15.20%	15.70%	18.00%	18.00%	18.00%	18.00%	18.00%	18.00%	18.00%	18.00%
Tennessee	No Standard													
Virginia	4.00%	7.00%	7.00%	7.00%	7.00%	7.00%	7.00%	12.00%	12.00%	12.00%	15.00%	15.00%	15.00%	15.00%
Washington, D.C.	12.00%	13.50%	15.00%	16.50%	18.00%	20.00%	20.00%	20.00%	20.00%	20.00%	20.00%	20.00%	20.00%	20.00%
West Virginia	No Standard													

Under the existing renewable portfolio standards, approximately 7.4 percent of PJM load must be served by renewable resources in 2015 and 16.2 percent of PJM load by 2028 under defined RPS rules. As shown in Table 8-6, Delaware and Illinois will require 25.0 percent of load to be served by renewable resources in 2028, the highest standard of PJM jurisdictions. Renewable resources earn renewable energy credits (RECs) (also

¹¹¹ See Ohio Senate Bill 310.

¹¹² See Enr. Com. Sub. For H. B. No. 2001.

¹¹³ This shows the total standard of renewable resources in all PJM jurisdictions, including Tier I, Tier II and Tier III resources.

¹¹⁴ See 146 FERC ¶ 61,084 at P 32 ("We disagree with Exelon's argument that the Production Tax Credit and Renewable Energy Credits should be considered [out-of-market (00M)] revenues. The relevant, Commission-approved Tariff provision defines OOM revenues as any revenues that are (i) not tradable throughout the New England Control Area or that are restricted to resources within a particular state or other geographic sub-region; or (ii) not available to all resources of the same physical type within the New England Control Area, regardless of the resource owner. [footnote omitted] Neither Production Tax Credit nor Renewable Energy Credits revenues fall within this definition. We also find that ISO-NE's use of an inflation rate in determining the price of Renewable Energy Credits is a reasonable estimate of Renewable Energy Credits for the 2018-2019 Capacity Commitment Period."].

photovoltaic generation and fuel cells using renewable fuels that are installed on or before December 31, 2014.¹¹⁵ This is equivalent to providing a REC price equal to three times its stated value per MWh. PJM Environmental Information Services (EIS), an unregulated subsidiary of PJM, operates the generation attribute tracking system (GATS), which is used by many jurisdictions to track these renewable energy credits.¹¹⁶

In addition to GATS, there are several other REC tracking systems used by states in the PJM footprint. Illinois, Indiana and Ohio use both GATS and M-RETS, the REC tracking system for resources located in the Midcontinent ISO, to track the sales of RECs used to fulfill their RPS requirements. Michigan and North Carolina have created their own state-wide tracking systems, MIRECS and NC-RETS, through which all RECs used to satisfy these states' RPS requirements must ultimately be traded. Table 8-7 shows the REC tracking systems used by each state within the PJM footprint.

Table 8-7 REC Tracking Systems in PJM States with Renewable Portfolio Standards

Jurisdiction with RPS	RE	C Tracking S	ystem Used	
Delaware	PJM-GATS			
Illinois	PJM-GATS	M-RETS		
Indiana	PJM-GATS	M-RETS		
Maryland	PJM-GATS			
Michigan			MIRECS	
New Jersey	PJM-GATS			
North Carolina				NC-RETS
Ohio	PJM-GATS	M-RETS		
Pennsylvania	PJM-GATS			
Virginia	PJM-GATS			
Washington, D.C.	PJM-GATS			

Table 8-8 Solar renewable standards by percent of electric load for PJM jurisdictions: 2015 to 2028

Some PJM jurisdictions have also added specific requirements for the purchase of solar resources. These solar requirements are included in the total requirements shown in Table 8-8 but may be met by solar RECs (SRECs) only. Delaware, Illinois, Maryland, New Jersey, North Carolina, Ohio, Pennsylvania, and Washington, D.C. have requirements for the proportion of load served by solar. Pennsylvania and Delaware allow only solar photovoltaic resources to fulfill the solar requirement. Solar thermal units like solar hot water heaters that do not generate electricity are considered Tier II. Indiana, Kentucky, Michigan, Tennessee, Virginia, and West Virginia have no specific solar standards. In 2015, New Jersey had the most stringent solar standard in PJM, requiring that 2.45 percent of retail electricity sales within the state be served by solar resources. As Table 8-6 shows, by 2028, New Jersey will continue to have the most stringent standard, requiring that at least 4.10 percent of load be served by solar.

Some PJM jurisdictions have also added specific requirements to their renewable portfolio standards for other technologies. The standards shown in Table 8-9 are also included in the total RPS requirements. Illinois requires that a defined proportion of retail load be served by wind resources, increasing from 6.75 percent of load served in 2015 to 18.75 percent in 2026. Maryland, New Jersey, Pennsylvania and Washington D.C. all have "Tier II" or "Class 2" standards, which allow specific technology types, such as waste coal units in Pennsylvania, to qualify for renewable energy credits. By 2020, North Carolina's RPS requires that 0.2 percent of power be generated using swine waste and that 900 GWh of power be produced by poultry waste (Table 8-9).

Jurisdiction	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
Delaware	1.00%	1.25%	1.50%	1.75%	2.00%	2.25%	2.50%	2.75%	3.00%	3.25%	3.50%	3.50%	3.50%	3.50%
Illinois	0.27%	0.60%	0.69%	0.78%	0.87%	0.96%	1.05%	1.14%	1.23%	1.32%	1.41%	1.50%	1.50%	1.50%
Indiana	No Solar Standard													
Kentucky	No Standard													
Maryland	0.50%	0.70%	0.95%	1.40%	1.75%	2.00%	2.00%	2.00%	2.00%	2.00%	2.00%	2.00%	2.00%	2.00%
Michigan	No Solar Standard													
New Jersey	2.45%	2.75%	3.00%	3.20%	3.29%	3.38%	3.47%	3.56%	3.65%	3.74%	3.83%	3.92%	4.01%	4.10%
North Carolina	0.14%	0.14%	0.14%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%
Ohio	0.12%	0.12%	0.15%	0.18%	0.22%	0.26%	0.30%	0.34%	0.38%	0.42%	0.46%	0.50%	0.50%	0.50%
Pennsylvania	0.14%	0.25%	0.29%	0.34%	0.39%	0.44%	0.50%	0.50%	0.50%	0.50%	0.50%	0.50%	0.50%	0.50%
Tennessee	No Standard													
Virginia	No Solar Standard													
Washington, D.C.	0.70%	0.83%	0.98%	1.15%	1.35%	1.58%	1.85%	2.18%	2.50%	2.50%	2.50%	2.50%	2.50%	2.50%
West Virginia	No Standard													

115 See Delaware Renewable Portfolio Standard, <http://programs.dsireusa.org/system/program/detail/1231> (Accessed October 1, 2015).

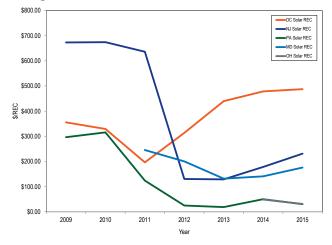
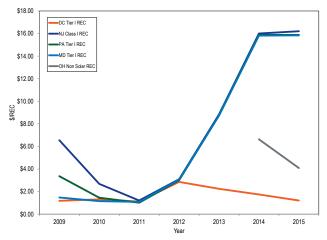
116 GATS publishes details on every renewable generator registered within the PJM footprint and aggregate emissions of renewable generation, but does not publish generation data by unit.

Table 8-9 Additional renewable standards of PJM jurisdictions: 2015 to 2028

Jurisdiction		2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
Illinois	Wind Requirement	6.75%	7.50%	8.63%	9.75%	10.88%	12.00%	13.13%	14.25%	15.38%	16.50%	17.63%	18.75%	18.75%	18.75%
Illinois	Distributed Generation	0.07%	0.10%	0.12%	0.13%	0.15%	0.16%	0.18%	0.19%	0.21%	0.22%	0.24%	0.25%	0.25%	0.25%
Maryland	Tier II Standard	2.50%	2.50%	2.50%	2.50%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
New Jersey	Class II Standard	2.50%	2.50%	2.50%	2.50%	2.50%	2.50%	2.50%	2.50%	2.50%	2.50%	2.50%	2.50%	2.50%	2.50%
North Carolina	Swine Waste	0.07%	0.07%	0.14%	0.14%	0.14%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%
North Carolina	Poultry Waste (in GWh)	700	900	900	900	900	900	900	900	900	900	900	900	900	900
Pennsylvania	Tier II Standard	6.20%	8.20%	8.20%	8.20%	8.20%	8.20%	10.00%	10.00%	10.00%	10.00%	10.00%	10.00%	10.00%	10.00%
Washington, D.C.	Tier II Standard	2.50%	2.00%	1.50%	1.00%	0.50%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%

REC prices are required to be publicly disclosed in Maryland, Pennsylvania and the District of Columbia, but in the other states REC prices are not publicly available. Figure 8-2 shows the average solar REC (SREC) price by jurisdiction for 2009 through 2015. The average NJ SREC prices dropped from \$674 per SREC in 2010 to \$231 per SREC in 2015. The DC SREC prices are currently the highest at \$488 per SREC.¹¹⁷

Figure 8-2 Average solar REC price by jurisdiction: 2009 through 2015

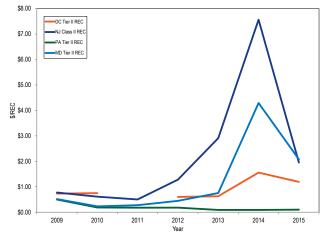

Figure 8-3 shows the average Tier I REC price by jurisdiction from 2009 through 2015. Tier I REC prices are lower than SREC prices. Ohio and Pennsylvania had the lowest SREC prices at \$33 per SREC and \$34 per SREC while New Jersey and Maryland have the highest Tier I REC prices at \$16 per REC and \$16 per REC.¹¹⁸

Figure 8-3 Average Tier I REC price by jurisdiction: 2009 through 2015

Tier II prices are lower than SREC and Tier I REC prices. Figure 8-4 shows the average Tier II REC price by jurisdiction for 2009 through 2015. Prices peaked in 2014 and have declined to a high of \$2.08 per REC in Maryland for 2015.¹¹⁹

119 Tier II REC price information obtained through Evomarkets http://www.evomarkets.com (Accessed January 29, 2016). There is no data reported by Evomarkets for DC in 2011.

¹¹⁷ Solar REC average price information obtained through Evomarkets, http://www.evomarkets.com (Accessed January 29, 2016).

¹¹⁸ Tier I REC price information obtained through Evomarkets, http://www.evomarkets.com (Accessed January 29, 2016).

PJM jurisdictions include various methods for complying with required renewable portfolio standards. If a retail supplier is unable to comply with the renewable portfolio standards required by the jurisdiction, suppliers may make alternative compliance payments, with varying standards, to cover any shortfall between the RECs required by the state and those the retail supplier actually purchased. In New Jersey, solar alternative compliance payments are \$323.00 per MWh.¹²⁰ Pennsylvania requires that the alternative compliance payment for solar credits be 200 percent of the average market value of solar RECs sold in the RTO. For all states with an alternative compliance payment, it is cheaper to buy the REC than pay the for the alternative compliance payment.

Compliance is defined in different ways by different jurisdictions. For example, Illinois requires that 50 percent of the state's renewable portfolio standard be met through alternative compliance payments. Table 8-10 shows the alternative compliance standards in PJM jurisdictions, where such standards exist.

Table 8–10 Renewable alternative compliance payments in PJM jurisdictions: As of December 31, 2015¹²¹

Jurisdiction	Standard Alternative Compliance (\$/MWh)	Tier II Alternative Compliance (\$/MWh)	Solar Alternative Compliance (\$/MWh)
Delaware	\$25.00		\$400.00
Illinois	\$1.89		
Indiana	Voluntary standard		
Kentucky	No standard		
Maryland	\$40.00	\$15.00	\$350.00
Michigan	No specific penalties		
New Jersey	\$50.00		\$331.00
North Carolina	No specific penalties		
Ohio	\$45.00		\$300.00
Pennsylvania	\$45.00	\$45.00	200% market value
Tennessee	No standard		
Virginia	Voluntary standard		
Washington, D.C.	\$50.00	\$10.00	\$500.00
West Virginia	No standard		

Table 8-11 shows renewable resource generation by jurisdiction and resource type 2015. This includes only units that would qualify for REC credits by primary fuel type, including waste coal, battery, and pumped-storage hydroelectric, all of which can qualify for Pennsylvania Tier II credits if they are located in the PJM footprint. Wind output was 16,442.1 GWh of 27,432.3 Tier I GWh, or 60.0 percent, in the PJM footprint. As shown in Table 8-11, 49,891.9 GWh were generated by renewable resources, including both Tier II and Tier I renewable credits, of which, Tier I type resources accounted for 55.0 percent. Total renewable generation was 5.9 percent of total generation in PJM for 2015. Landfill gas, solid waste and waste coal were 19,429.2 GWh of renewable resource generation or 38.9 percent of the total Tier I and Tier I.

¹²⁰ See Database of State Incentives for Renewables & Efficiency (DSIRE), New Jersey Incentives/ Policies for Renewables & Efficiency, "Solar Renewables Energy Certificates (SRECs)," *e-http://* programs.dsireus.aorg/system/program/detail/5687> (Accessed January 29, 2016).

¹²¹ See PJM – EIS (Environmental Management System). "Program Information," <http://www.pjmeis.com/> (Accessed January 4, 2016).

	Landfill	Pumped-	Run-of-River		Solid	Waste		Tier I Credit	Total Credit
Jurisdiction	Gas	Storage Hydro	Hydro	Solar	Waste	Coal	Wind	Only	GWh
Delaware	45.0	0.0	0.0	0.0	0.0	0.0	0.0	45.0	90.0
Illinois	135.3	0.0	0.0	14.0	0.0	0.0	6,326.7	6,476.0	6,476.0
Indiana	54.7	0.0	38.9	0.0	0.0	0.0	3,600.1	3,693.7	3,693.7
Kentucky	0.0	0.0	87.5	0.0	0.0	0.0	0.0	87.5	87.5
Maryland	86.4	0.0	1,577.8	62.0	983.2	0.0	422.3	2,148.5	3,131.7
Michigan	25.5	0.0	56.5	0.0	0.0	0.0	0.0	82.0	82.0
New Jersey	326.1	445.8	10.1	368.5	1,449.1	0.0	9.8	714.5	2,609.4
North Carolina	0.0	0.0	602.3	42.0	0.0	0.0	0.0	644.3	644.3
Ohio	341.1	0.0	440.0	1.4	0.0	0.0	1,147.2	1,929.7	1,929.7
Pennsylvania	1,278.8	1,703.4	3,256.5	26.7	1,363.3	7,583.9	3,333.0	7,895.1	18,545.7
Tennessee	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Virginia	544.1	3,721.9	588.4	0.0	1,304.7	2,986.5	0.0	1,132.6	9,145.6
Washington, D.C.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
West Virginia	3.7	0.0	976.8	0.0	0.0	917.9	1,603.1	2,583.5	3,501.4
Total	2,837.1	5,871.1	6,658.0	514.7	5,100.3	10,570.3	14,839.0	27,432.3	49,891.9
Percent Total	5.7%	11.8%	15.3%	1.0%	10.2%	23%	33.0%	55.0%	100.0%

Table 8-11 Renewable resource generation by jurisdiction and renewable resource type (GWh): 2015

Table 8-12 shows the capacity of renewable resources in PJM by jurisdiction, as defined by primary fuel type. This capacity includes coal and natural gas units that have a renewable fuel as an alternative fuel, and thus are able to earn renewable energy credits based on the fuel used to generate energy. New Jersey has the largest amount of solar capacity in PJM, 284.5 MW, or 74.3 percent of the total solar capacity. New Jersey's SREC prices were the highest in 2010 at \$674 per REC and in 2015 are at \$231 per REC. Wind resources are located primarily in western PJM, in Illinois and Indiana, which include 3,814.7 MW, or 58.8 percent of the total wind capacity.

Table 8-12 PJM renewable capacity by jurisdiction (MW): January 4, 2016

		Landfill	Natural		Pumped-	Run-of-River		Solid	Waste		
Jurisdiction	Coal	Gas	Gas	Oil	Storage Hydro	Hydro	Solar	Waste	Coal	Wind	Total
Delaware	0.0	8.1	1,797.0	13.0	0.0	0.0	0.0	0.0	0.0	0.0	1,818.1
Illinois	0.0	43.1	0.0	0.0	0.0	0.0	9.0	0.0	0.0	2,362.4	2,414.5
Indiana	0.0	8.0	0.0	0.0	0.0	8.2	0.0	0.0	0.0	1,452.4	1,468.6
lowa	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	185.0	185.0
Kentucky	0.0	0.0	0.0	0.0	0.0	61.0	0.0	0.0	0.0	0.0	61.0
Maryland	0.0	25.1	0.0	69.0	0.0	494.4	48.8	128.2	0.0	160.0	925.5
Michigan	0.0	8.0	0.0	0.0	0.0	13.9	0.0	0.0	0.0	0.0	21.9
New Jersey	0.0	79.7	0.0	0.0	453.0	11.5	284.5	162.0	0.0	4.5	995.2
North Carolina	0.0	0.0	0.0	0.0	0.0	352.5	20.0	0.0	0.0	0.0	372.5
Ohio	13,062.0	63.4	580.0	156.0	0.0	119.1	1.1	0.0	0.0	403.0	14,384.6
Pennsylvania	0.0	208.0	2,346.0	0.0	1,269.0	888.3	19.5	345.8	1,611.0	1,337.7	8,025.3
Tennessee	0.0	0.0	0.0	0.0	0.0	52.0	0.0	50.0	0.0	0.0	102.0
Virginia	0.0	224.1	0.0	17.0	5,166.2	350.5	0.0	444.9	585.0	0.0	6,787.7
West Virginia	8,772.0	2.2	519.0	0.0	0.0	213.9	0.0	0.0	165.0	583.3	10,255.4
PJM Total	21,834.0	669.6	5,242.0	255.0	6,888.2	2,565.2	383.0	1,130.9	2,361.0	6,488.2	47,817.1

Table 8-13 shows renewable capacity registered in the PJM generation attribute tracking system (GATS). This includes solar capacity of 2,191.4 MW of which 1,223.6 MW is in New Jersey. These resources can also earn renewable energy credits, and can be used to fulfill the renewable portfolio standards in PJM jurisdictions. Some of this capacity is located in jurisdictions outside PJM, but may qualify for specific renewable energy credits in some PJM jurisdictions. This includes both solar generation located inside PJM but not PJM units, and generation connected to other RTOs outside PJM.

			Landfill	Natural	Other	Other		Solid		
Jurisdiction	Coal	Hydroelectric	Gas	Gas	Gas	Source	Solar	Waste	Wind	Total
Alabama	0.0	0.0	0.0	0.0	0.0	0.0	0.0	87.5	0.0	87.5
Arkansas	0.0	135.0	0.0	0.0	18.0	0.0	0.0	0.0	0.0	153.0
Delaware	0.0	0.0	2.2	0.0	0.0	0.0	65.3	0.0	2.1	69.6
Georgia	0.0	0.0	0.0	0.0	0.0	0.0	38.7	258.9	0.0	297.6
Illinois	0.0	6.6	76.9	0.0	0.6	0.0	38.0	0.0	600.5	722.6
Indiana	0.0	0.0	43.2	0.0	6.2	219.4	3.7	0.0	180.0	452.6
lowa	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	475.0	475.1
Kentucky	600.0	2.2	17.6	0.0	0.0	0.0	1.7	93.0	0.0	714.5
Louisiana	0.0	0.0	0.0	0.0	0.0	0.0	0.0	129.2	0.0	129.2
Maryland	65.0	0.0	11.7	129.0	0.0	0.0	313.2	11.2	0.3	530.4
Michigan	55.0	1.3	3.2	0.0	0.0	0.0	1.7	0.0	0.0	61.2
Missouri	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	446.0	446.0
New Jersey	0.0	0.0	55.0	0.0	8.3	0.0	1,223.6	0.0	4.9	1,291.9
New York	0.0	158.7	0.0	0.0	0.0	0.0	0.4	0.0	0.0	159.1
North Carolina	0.0	242.5	12.0	0.0	0.0	0.0	152.7	30.0	0.0	437.2
Ohio	0.0	1.0	33.6	92.6	16.4	32.4	117.2	109.3	26.2	428.8
Pennsylvania	109.7	37.0	44.7	91.0	12.6	5.0	202.5	38.6	3.3	544.3
Tennessee	0.0	52.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	52.0
Texas	0.0	0.0	0.0	0.0	0.0	0.0	0.0	57.7	0.0	57.7
Virginia	0.0	18.2	14.5	0.0	0.5	0.0	12.3	287.6	0.0	333.0
West Virginia	0.0	9.0	0.0	0.0	0.0	0.0	0.4	44.6	0.0	54.0
Wisconsin	0.0	42.0	0.0	0.0	0.0	0.0	2.6	0.0	0.0	44.6
District of Columbia	0.0	0.0	0.0	0.0	0.0	0.0	17.3	0.0	0.0	17.3
Total	829.7	705.4	314.6	312.6	62.5	256.8	2,191.4	1,147.6	1,738.4	7,559.0

Table 8–13 Renewable capacity by jurisdiction, non–PJM units registered in GATS (MW), on January 4, 2016¹²²

Emissions Controlled Capacity and Renewables in PJM Markets

Emission Controlled Capacity in the PJM Region

Environmental regulations affect decisions about emission control investments in existing units, investment in new units and decisions to retire units lacking emission controls.¹²³ Many PJM units burning fossil fuels have installed emission control technology.

Coal has the highest SO_2 emission rate, while natural gas and diesel oil have lower SO_2 emission rates.¹²⁴ Of the current 70,850.8 MW of coal capacity in PJM, 56,105.0 MW of capacity, 79.2 percent, has some form of FGD (flue-gas desulfurization) technology to reduce SO_2 emissions. Table 8-14 shows SO_2 emission controls by fossil fuel fired units in PJM.^{125,126}

Table 8-14 SO₂ emission controls by fuel type (MW), as of December 31, 2015^{127}

	SO ₂	No SO ₂		Percent
	Controlled	Controls	Total	Controlled
Coal	56,105.0	14,745.8	70,850.8	79.2%
Diesel Oil	0.0	6,856.8	6,856.8	0.0%
Natural Gas	0.0	52,676.3	52,676.3	0.0%
Other	325.0	4,920.7	5,245.7	6.2%
Total	56,430.0	79,199.6	135,629.6	41.6%

 NO_x emission control technology is used by all fossil fuel fired unit types. Of current fossil fuel fired units in PJM, 125,898.6 MW, 92.8 percent, of 135,629.6 MW of capacity in PJM, have emission controls for NO_x . Table 8-15 shows NO_x emission controls by unit type in PJM. While most units in PJM have NO_x emission controls, many of these controls may need to be upgraded in order to meet each state's emission compliance standards based on whether a state is part of CSAPR, CAIR, Acid Rain Program (ARP) or a combination of the three. Future NO_x compliance standards will require select catalytic converters (SCRs) or selective non-catalytic reduction (SCNRs) for coal steam units, as well as SCRs

¹²² See PJM – EIS (Environmental Information Services), "Renewable Generators Registered in GATS," <http://www.pjm-eis.com/reports-and-news/public-reports.aspx> (Accessed January 4, 2016).
123 See EPA. "National Ambient Air Quality Standards (NAAQS)," http://www3.epa.gov/ttn/naaqs/

criteria.html> (Accessed February 24, 2016). 124 Diesel oil includes number 1, number 2, and ultra-low sulfur diesel. See EPA. "Electronic Code of Federal Regulations, Section 72.2" http://www.ecfr.gov/cgi-bin/retrieveECFR?gp=EdSID=5584e 589aef37add39257c1f0c1617e4&r=PARTEtn=40y17.0.1.1.1#se40.17.72>_2 (Accessed February 24, 2016).

¹²⁵ See EPA. "Air Market Programs Data," (Accessed January 4, 2016). 126 The total MW for each fuel type are less than the 177,682.8 MW reported in Section 5: Capacity, because EPA data on controls could not be matched to some PIM units. "Air Markets Program Data," http://ampd.epa.gov/ampd/OueryToolie.html (Accessed January 4, 2016).

¹²⁷ The "other" category includes petroleum coke, wood, process gas, residual oil, other gas, and other oil.

or water injection technology for peaking combustion turbine units.¹²⁸

Table 8-15 NO_x emission controls by fuel type (MW), as of December 31, 2015

	NO _x	No NO _x		Percent
	Controlled	Controls	Total	Controlled
Coal	69,624.2	1,226.6	70,850.8	98.3%
Diesel Oil	2,617.8	4,239.0	6,856.8	38.2%
Natural Gas	50,856.9	1,819.4	52,676.3	96.5%
Other	2,799.7	2,446.0	5,245.7	53.4%
Total	125,898.6	9,731.0	135,629.6	92.8%

Most coal units in PJM have particulate controls due to the NAAQS and CSAPR. Typically, technologies such as electrostatic precipitators (ESP) or fabric filters (baghouses) are used to reduce particulate matter from coal steam units.¹²⁹ Fabric filters work by allowing the flue gas to pass through a tightly woven fabric which filters out the particulates. Table 8-16 shows particulate emission controls by unit type in PJM. In PJM, 70,516.8 MW, 99.5 percent, of all coal steam unit MW, have some type of particulate emissions control technology, as of December 31, 2015. Most coal steam units in PJM have particulate emission controls in the form of ESPs, but many units have also installed baghouse technology, or a combination of an FGD and SCR to meet the state and federal emissions limits established by the MATS EPA regulations.¹³⁰ Currently, 139 of the 211 coal steam units have baghouse or FGD technology installed, representing 54,322 MW out of the 70,850.8 MW total coal capacity, or 76.7 percent.

Table 8–16 Particulate emission controls by fuel type (MW), as of December 31, 2015

	Particulate	No Particulate		Percent
	Controlled	Controls	Total	Controlled
Coal	70,516.8	334.0	70,850.8	99.5%
Diesel Oil	0.0	6,856.8	6,856.8	0.0%
Natural Gas	260.0	52,416.3	52,676.3	0.5%
Other	3,102.0	2,143.7	5,245.7	59.1%
Total	73,878.8	61,750.8	135,629.6	54.5%

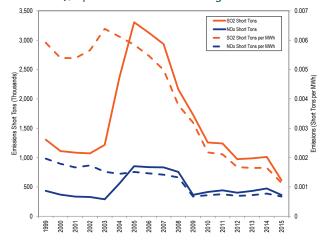
Figure 8-5 shows the total CO_2 short ton emissions (in millions) and the CO_2 short ton emissions per MWh within PJM.¹³¹ Since 1999 the amount of CO_2 produced per MWh was at a minimum of 0.81 short tons per MWh

in 2001, and a maximum of 0.93 short tons per MWh in 2010. In 2015, CO_2 short tons emissions were 0.85 per MWh.

Figure 8-6 shows the total SO_2 and NO_x short ton emissions (in thousands) and the short ton emissions per MWh within PJM. Since 1999 the amount of SO_2 produced per MWh was at a minimum of 0.001174 short tons per MWh in 2015, and a maximum of 0.006387 short tons per MWh in 2004. Since 1999, the amount of NO_x produced per MWh was at a minimum of 0.000672 short tons per MWh in 2012, and a maximum of 0.001964 short tons per MWh in 1999. In 2015, SO_2 short ton emissions were 0.001174 per MWh and NO_x short ton emissions were 0.000685 per MWh.

Figure 8–5 CO_2 emissions by year (millions of short tons), by PJM units: 1999 through 2015¹³²

¹²⁸ See EPA. "Mercury and Air Toxics Standards," <http://www.epa.gov/mats/index.html> (Accessed January 29, 2016).


See EPA, "Air Pollution Control Technology Fact Sheet," <<u>http://www.epa.gov/ttnchie1/mkb/documents/ff-pulse.pdf</u>> (Accessed January 29, 2016).
 These regulations became effective April 16, 2015. See EPA. "Mercury and Air Toxics Standards,"

¹³⁰ Inese regulations became effective April 16, 2015. See EPA. Intercury and Air Toxics Standards, ">http://www.epa.gov/mats/index.html> (Accessed January 29, 2016).

¹³¹ Unless otherwise noted, emissions are measured in short tons. A short ton is 2,000 pounds.

¹³² The emissions are calculated from the continuous emission monitoring system (CEMS) data from generators located within the PJM footorint.

Figure 8-6 SO₂ and NO_x emissions by year (thousands of short tons), by PJM units: 1999 through 2015^{133}

Wind Units

Table 8-17 shows the capacity factor of wind units in PJM. In 2015, the capacity factor of wind units in PJM was 28.3 percent. Wind units that were capacity resources had a capacity factor of 29.1 percent and an installed capacity of 6,338 MW. Wind units that were classified as energy only had a capacity factor of 17.9 percent and an installed capacity of 619 MW. Wind capacity in RPM is derated to 13 percent of nameplate capacity for the capacity market, and energy only resources are not included in the capacity market.¹³⁴

Table 8-17 Capacity factor of wind units in PJM:2015135

Type of Resource	Capacity Factor	Installed Capacity (MW)
Energy-Only Resource	17.9%	619
Capacity Resource	29.1%	6,338
All Units	28.3%	6,957

Figure 8-7 shows the average hourly real-time generation of wind units in PJM, by month. The highest average hour, 3,128.9 MW, occurred in November, and the lowest average hour, 528.7 MW, occurred in July. Wind output in PJM is generally higher in off-peak hours and lower in on-peak hours.

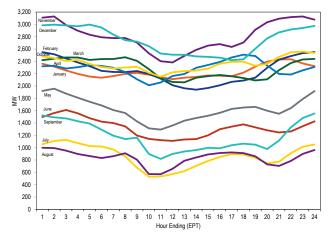


Table 8-18 shows the generation and capacity factor of wind units in each month of 2014 and 2015.

Table 8-18 Capacity factor	of wind units in PJM by	!
month: 2014 and 2015		

	2014		2015	
Month	Generation (MWh)	Capacity Factor	Generation (MWh)	Capacity Factor
January	1,918,441.4	40.7%	1,664,426.8	33.9%
February	1,342,055.5	31.5%	1,511,093.1	34.1%
March	1,661,382.1	35.3%	1,701,249.6	34.7%
April	1,697,703.3	37.2%	1,641,965.0	34.5%
May	1,238,061.3	26.2%	1,209,088.5	24.6%
June	820,312.2	18.0%	955,156.7	20.1%
July	757,166.8	16.0%	639,381.7	13.0%
August	566,425.3	12.0%	623,873.6	12.4%
September	721,411.2	15.8%	846,505.6	17.3%
October	1,416,878.2	30.0%	1,756,221.4	34.8%
November	1,949,112.9	41.5%	2,023,340.0	41.3%
December	1,451,542.0	29.7%	2,037,436.4	39.8%
Annual	15,540,492.0	27.8%	16,609,738.2	28.3%

Wind units that are capacity resources are required, like all capacity resources except Demand Resources, to offer the energy associated with their cleared capacity in the Day-Ahead Energy Market and in the Real-Time Energy Market. Wind units may offer non-capacity related wind energy at their discretion. Figure 8-8 shows the average hourly day-ahead generation offers of wind units in PJM, by month. The hourly day-ahead generation offers of wind units in PJM may vary.

¹³³ The emissions are calculated from the continuous emission monitoring system (CEMS) data from generators located within the PJM footprint.

¹³⁴ Wind resources are derated to 13 percent unless demonstrating higher availability during peak periods.

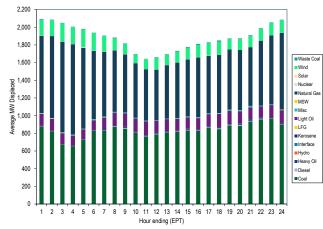

¹³⁵ Capacity factor is calculated based on online date of the resource

Figure 8-8 Average hourly day-ahead generation of wind units in PJM: 2015

Output from wind turbines displaces output from other generation types. This displacement affects the output of marginal units in PJM. The magnitude and type of effect on marginal unit output depends on the level of the wind turbine output, its location, time and duration. One measure of this displacement is based on the mix of marginal units when wind is producing output. Figure 8-9 shows the hourly average proportion of marginal units by fuel type mapped to the hourly average MW of real-time wind generation in 2015. This is not an exact measure of displacement because it is not based on a redispatch of the system without wind resources. When wind appears as the displaced fuel at times when wind resources were on the margin this means that there was no displacement for those hours.

Solar Units

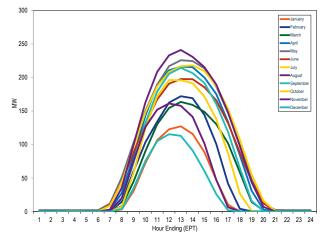

Table 8-19 shows the capacity factor of solar units in PJM. In 2015, the capacity factor of solar units in PJM was 16.0 percent. Solar units that were capacity resources had a capacity factor of 16.1 percent and an installed capacity of 323 MW. Solar units that were classified as energy only had a capacity factor of 15.8 percent and an installed capacity of 175 MW. Solar capacity in RPM is derated to 38 percent of nameplate capacity for the capacity market, and energy only resources are not included in the capacity market.¹³⁶

Table 8-19 Capacity factor of wind units in PJM: 2015

Type of Resource	Capacity Factor	Installed Capacity (MW)	
Energy-Only Resource	15.8%	175	
Capacity Resource	16.1%	323	
All Units	16.0%	498	

Solar output differs from month to month, based on seasonal variation and daylight hours during the month. Figure 8-10 shows the average hourly realtime generation of solar units in PJM, by month. Solar generation was highest in August, the month with the highest average hour, 227.6 MW, compared to 355.7 MW of solar installed capacity in PJM. Solar generation in PJM is highest during the hours of 11:00 through 13:00 EPT.

Figure 8-10 Average hourly real-time generation of solar units in PJM: 2015

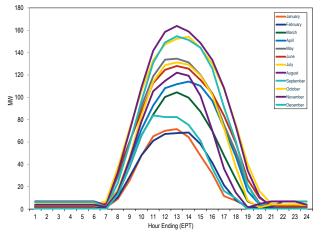

136 Solar resources are derated to 38 percent unless demonstrating higher availability during peak periods. Table 8-20 shows the generation and capacity factor of wind units in each month of 2014 and 2015.

Table 8-20 Capacity factor of solar units in PJM by	
month: 2014 and 2015	

	2014		2015	
	Generation	Capacity	Generation	Capacity
Month	(MWh)	Factor	(MWh)	Factor
January	13,764.4	7.9%	19,935.6	8.8%
February	17,232.4	10.7%	27,609.2	13.3%
March	27,178.0	15.3%	32,677.1	13.7%
April	37,334.7	21.7%	45,376.5	19.5%
May	36,570.8	20.6%	53,368.8	22.2%
June	40,402.1	21.9%	45,158.2	19.4%
July	43,031.6	21.9%	52,125.7	21.7%
August	39,747.3	19.9%	52,751.5	22.0%
September	33,869.2	17.6%	42,099.8	18.1%
October	26,942.5	13.3%	37,085.5	15.4%
November	20,502.5	10.2%	25,881.6	11.1%
December	12,782.5	5.9%	17,067.0	7.1%
Annual	349,357.8	15.5%	451,136.5	16.1%

Solar units that are capacity resources are required, like all capacity resources except Demand Resources, to offer the energy associated with their cleared capacity in the Day-Ahead Energy Market and in the Real-Time Energy Market. Solar units may offer non-capacity related solar energy at their discretion. Figure 8-11 shows the average hourly day-ahead generation offers of solar units in PJM, by month.¹³⁷

Figure 8-11 Average hourly day-ahead generation of solar units in PJM: 2015

¹³⁷ The average day-ahead generation of solar units in PJM is greater than 0 for hours when the sun is down due to some solar units being paired with landfill units.

2015 State of the Market Report for PJM