

Market Monitoring in PJM PJM/NICA Markets in June

Illinois Commerce Commission Post 2006 Initiative July 20, 2004

Joseph E. Bowring Market Monitoring Unit

www.pjm.com

PJM's Operational Markets and Services

- Energy Markets
 - Day Ahead
 - Real Time
- Capacity Credits Markets
 - Daily
 - Long-Term
- Financial Transmission Entitlements Market
 - Auction Options
- Ancillary Services
 - Regulation Market
 - Spinning Reserve Market
 - Blackstart Service
 - Reactive Services

- Develop/modify market rules to facilitate competition
- Limit returns to market power
- Provide incentives to competitive behavior
- Make exercise of market power more difficult

- Monitor compliance with rules, standards, procedures and practices of PJM.
- Monitor actual or potential design flaws in rules, standards, procedures and practices of PJM.
- Monitor structural problems in the PJM market that may inhibit a robust and competitive market.
- Monitor the potential of Market Participants to exercise undue market power.

- Discussion of issues with relevant Market Participants; informal resolution of issues.
- Issue demand letters requesting a change in behavior by relevant Market Participants.
 - Provide demand letters to relevant Authorized Government Agencies.
- Recommend modifications to rules, standards, procedures and practices of PJM.
 - Make recommendations to PJM Committees or to PJM Board.
 - Make regulatory filings to address market issues and seek remedial measures.
- Evaluate additional enforcement mechanisms.

- Include diverse staff expertise
 - Economics/Engineering
 - Generation
 - Transmission
 - Power markets
 - Database/IT
- Build understanding of detailed market structure: macro/micro
- Build understanding of physical infrastructure
- Build understanding of operations
- Build in MMU data access/storage to RTO data designs
- Confidentiality protocols
- Complaint protocols

Independent Internal Market Monitoring

- Independent System Operator
- ISO/RTO has no financial stake in market outcomes
- ISO/RTO has independent Board
- ISO and MMU are independent from all market participants
 - Market Monitoring Plan is not subject to modification by PJM members.
 - Amendment to PJM's Open Access Transmission Tariff subject to FERC approval
- MMU is independent from ISO

MMU Accountability

- To FERC (per FERC MMU Orders and MM Plan).
- To PJM Board.
- To PJM President.

- Interaction with market participants is critical to understanding real markets
- Interaction with state Commissions is critical to understanding retail/wholesale interaction issues
- Interaction with RTO staff is critical to understanding real markets
- Coordination with FERC is essential to efficient monitoring and mitigation

- Market design
 - Market design critical for effective monitoring
 - Good market design does not obviate need for monitoring
- Market structure
 - Aggregate, supply-side market structure conditions not adequate to ensure competition
 - Transmission constraints limit competition in unpredictable ways
 - Full demand side participation a prerequisite complex regulatory interactions to create required infrastructure
- Need to define market power as clearly as possible
 - Communicate definition to participants
 - Explain specific examples as they arise
- Need to define consequences of exercising market power
 - Explain specific examples as they arise

- Subtle and complex ways to exercise market power
- Generally not aggregate market issue
- Operating reserves
- Bid parameters
- Retirements/mothballing
- Ramp violations
- Loop flows
- FTR/Inc/Dec
- Creation of congestion

NICA market results - May/June 2004

- Overall, the integrated NICA markets functioned well and effectively.
- The NICA energy market results were reasonably competitive.
- Pathway flows have increased competition in NICA and in PJM CA.
- Interface pricing has been reasonably effective.
- FTRs in NICA have provided an effective congestion hedge.
- Congestion has been limited.
- Financial offer and bid levels reflect an active use of PJM hedging instruments.

Energy market prices – June 2004

- NICA real-time zonal LMP was less than \$30 per MWh for 69 percent of the hours.
- NICA day-ahead zonal LMP was less than \$30 per MWh for 60 percent of the hours.
- PJM CA real-time LMP was greater than NICA real-time LMP by an average of \$13.19 per MWh.
- PJM CA day-ahead LMP was greater than NICA day-ahead LMP by an average of \$12.40 per MWh.

NICA Zonal LMP - June 2004

Average Hourly Real-Time LMP - June 2004

Average LMP Difference for June: \$13.19

Average Hourly Day-Ahead LMP - June 2004

Average LMP Difference for June: \$12.40

Energy market price differentials – May and June 2004

- NICA day-ahead zonal LMP was less than NICA real-time zonal LMP in May. The average hourly difference was \$2.47 per MWh.
- PJM CA day-ahead zonal LMP was less than PJM CA real-time zonal LMP in May. The average hourly difference was \$1.58 per MWh.
- NICA day-ahead zonal LMP was greater than NICA real-time zonal LMP in June. The average hourly difference was \$0.91 per MWh.
- PJM CA day-ahead zonal LMP was greater than PJM CA real-time zonal LMP in June. The average hourly difference was \$0.12 per MWh.

Day-Ahead vs. Real-Time LMP Differentials

Average Hourly Difference of Day-Ahead and Real-Time LMPs May 2004

Hour Ending (Eastern Prevailing Time)

Day-Ahead vs. Real-Time LMP Differentials

Average Hourly Difference of Day-Ahead and Real-Time LMPs

June 2004

Hour Ending (Eastern Prevailing Time)

NICA Peak Demand Day

Fuel Type of NICA Marginal Units

Fuel of NICA Marginal Units

NICA Congestion for June 2004

- Congestion was very limited in NICA in June.
- Day-Ahead Market congestion:
 - 8 event hours
- Real-Time Market congestion:
 - 1 event hour
- No NICA units were offer-capped in the Real-Time Markets in June 2004.
- No NICA units were offer-capped in the Day-Ahead Markets in June 2004.

NICA Congestion Event Hours by Facility JUNE 2004

Real-time pathway statistics for June 2004

- Pathway limited from NICA to PJM 354 hours, or 49 percent.
- Pathway limited from PJM to NICA 65 hours, or 9 percent.
- Pathway not limited for 301 hours, or 41 percent.
- Pathway flowed from NICA to PJM for 485 hours, or 67 percent.
- Pathway flowed from PJM to NICA for 235 hours, or 33 percent.

Day-ahead pathway statistics for June 2004

- Pathway limited from NICA to PJM 478 hours, or 66 percent.
- Pathway limited from PJM to NICA 82 hours, or 11 percent.
- Pathway not limited for 160 hours, or 22 percent.
- Pathway flowed from NICA to PJM for 585 hours, or 81 percent.
- Pathway flowed from PJM to NICA for 135 hours, or 19 percent.
- The direction of flow on the pathway is primarily a function of interface price differentials.

Actual vs. Scheduled Tie Flows

NICA Actual Minus Scheduled Tie Flows June 2004

- Daily forward prices for NIHub and CINergy tracked closely in June.
 - The maximum daily NIHub CINergy spread was \$9.05 per MWh during June.
 - The average daily NIHub CINergy spread was \$0.75 per MWh during June.
 - The NIHub CINergy spread was \$0.00 per MWh on the final trading day of June.

Cinergy, NIHub and PJM Dailies

- Forward prices for the <u>July-August</u> contract showed varying spreads during June.
 - Spreads reflect traders' expectations about future prices.
 - The maximum NIHub CINergy spread was \$7.40 per MWh during June.
 - The average NIHub CINergy spread was \$5.12 per MWh during June
 - The NIHub CINergy spread was \$2.00 per MWh on the final trading day for the July-August contract.

Cinergy, NIHub and PJM West Forward Prices

Platts Data Jul - Aug 2004 Contract

- Forward prices for the <u>August</u> contract showed varying spreads during June.
 - Spreads reflect traders' expectations about future prices.
 - The maximum NIHub CINergy spread was \$7.65 per MWh during June.
 - The average NIHub CINergy spread was \$4.81 per MWh during June
 - The NIHub CINergy spread for the August contract was \$0.10 per MWh on the final day of June.

Cinergy, NIHub and PJM West Forward Prices

Platts Data Aug 2004 Contract

NICA Daily Regulation Cost per MW 2004

— NICA Regulation Rate

- NICA Capacity Market structural tests indicate significant potential market power.
- Results of NICA Capacity Market auctions were generally less than the proposed offer cap.

- Average capacity price per MW for the summer 2004 period was \$30.39.
- Average capacity price per MW for the fall 2004 period was \$25.88.
- Average capacity price per MW for the winter 2004/2005 period was \$25.66.
- Average capacity price per MW for the full planning period was \$27.86.

- The NICA energy market had high HHIs during June.
 - High HHIs reflect highly concentrated ownership of the units supplying energy on an hourly basis.
- The NICA energy market had low RSIs during June.
 - RSIs less than 1.0 indicate that a single supplier is pivotal during the hour.
- The pathway flows served to provide competitive pressures in the NICA energy market, offsetting the stand-alone structural market power concerns.

Market Herfindahl-Hirschman Index (HHI)

NICA Hourly Energy Market HHI JUNE 2004

NICA Residual Supply Index – May 2004 (Revised)

Number of Hours RSI < 1.10	Number of Hours RSI < 1.00	Percent of Hours RSI < 1.10	Percent of Hours RSI < 1.00	Overall Average RSI	Overall Minimum RSI
426	337	57%	45%	0.93	0.69

NICA Residual Supply Index – June 2004

Number of Hours RSI < 1.10	Number of Hours RSI < 1.00	Percent of Hours RSI < 1.10	Percent of Hours RSI < 1.00	Overall Average RSI	Overall Minimum RSI
570	470	77%	63%	0.85	0.47