ELCC – IMM Comments

Markets & Reliability Committee September 19, 2020 IMM

ELCC Issues

- ELCC values
 - Source/basis/logic
 - Single value or a set of interdependent values (surface)
- Guaranteed ELCC
 - Class or unit
 - Impact
- ELCC in the capacity market clearing
 - Static, predefined, ex ante
 - Dynamic, internally consistent
 - Marginal or average value

2

©2020

PJM Logic for ELCC Values

- With all thermal units, increase load to get to 1 in 10 LOLE
- Add PJM forecasted intermittent generation (temporal shape of output based on historical data).
- LOLE improves to over 1 in 10 (e.g. to 1 in 15).
 - Load Method: Increase load until LOLE is equal to 1 in 10. Added load divided by intermittent ICAP is the ELCC.
 - Gen Method: Remove base capacity until LOLE is equal to 1 in 10. Removed capacity divided by intermittent ICAP is the ELCC.

www.monitoringanalytics.com

Ex Ante ELCC

- Ex ante approach
 - ELCC values by class define the resource UCAP for offers into capacity auction
 - ELCC values for each resource are determined prior to the auction based on modeling
 - A single value for each class of intermittent resources
 - The ex ante ELCC resource mix is not a function of capacity market clearing.
 - No interactions;
 - No simultaneous determination.
 - Ex ante ELCC is always wrong; accurate prediction not possible.

www.monitoringanalytics.com

4

- Lock in / floor values to be based on 10 year forecast of class ELCC values
 - A 10 year ELCC forecast will necessarily be based on many unknown inputs (inputs would include thermal capacity levels, intermittent capacity levels, intermittent generation levels and shape)
 - There is no means or structure for understanding the ELCC forecast error
 - ELCC should reflect the capacity resource mix and can only be accurately determined when incorporated into the auction clearing engine

- Lock in / floor values to be based on 10 year forecast of class ELCC values. Ignores key variables.
 - No analysis of coal retirements;
 - No analysis of nuclear retirements;
 - No analysis of impact of significant rule changes;
 - No analysis of significant technology changes.
- Imposes risks on customers?
 - Who pays in the event of significant change?
- The goal of markets is to shift risk to investors.
- Ten year lock in shifts risks to other investors and to customers. Inefficient result.

www.monitoringanalytics.com

- Proposal calls for a hierarchy of "support" to compensate for locked in ELCC floors in excess of realized ELCC values
 - Resources within a related ELCC class or group of classes will be penalized by using required ELCC values that are less than their realized ELCC
 - If ELCC class cannot cover shortfall, an allocation across
 all ELCC classes will be required
 - It is not clear from the proposal what happens in the event there are not enough renewable resources to make up the shortfall resulting from the lock in.
 - 。 PJM clears additional thermal resources?

www.monitoringanalytics.com

- Old units will be over valued and overpaid.
- New units will be under valued and underpaid.
- Underpayment can affect unrelated asset types.
- No analysis of expected impact of lock in over 10 years.
 - Payments to resources.
 - Payments by customers.

www.monitoringanalytics.com

Lock In Example

- The ELCC value for 20,000 MW nameplate of solar is 50 percent which results in 10,000 MW UCAP
 - 5,000 MW has a guaranteed floor at 60 percent (Group A)
 - 7,000 MW has a guaranteed floor at 50 percent (Group B)
 - 8,000 MW has a guaranteed floor at 40 percent (Group C)
 - Group A is credited with 3,000 MW UCAP (60 percent)
 - Group B is credited with 3,500 MW UCAP (50 percent)
 - Group C is credited with 3,500 MW UCAP (43.75 percent)
- Group C penalized. Lower floor value.
- What happens if Group C is guaranteed 45 percent floor value?

www.monitoringanalytics.com

9

Lock In Example

- The ELCC value for 20,000 MW nameplate of solar is 50 percent which results in 10,000 MW UCAP
 - 5,000 MW has a guaranteed floor at 60 percent (Group A)
 - 7,000 MW has a guaranteed floor at 50 percent (Group B)
 - 8,000 MW has a guaranteed floor at 45 percent (Group C)
 - Group A is credited with 3,000 MW UCAP (60 percent)
 - Group B is credited with 3,500 MW UCAP (50 percent)
 - Group C is credited with 3,600 MW UCAP (45 percent)
- Credited UCAP exceeds 10,000 MW
- 100 MW must come from a different class, or PJM must clear an additional 100 MW of thermal.

©2020

www.monitoringanalytics.com

Simultaneous ELCC

- Inputs to the ELCC study are the actual capacity resources that intend to offer into the capacity auction
- The level of thermal resources and the levels of intermittent classes are varied to produce different ELCC values for different resource mixes (the ELCC surface).
- Contrast to PJM method which results in a single ELCC point, based on forecasts rather than actual offers.
- ELCC values for each resource class are determined as part of the clearing of the capacity market, based on the optimal, least cost combination of resources.

www.monitoringanalytics.com

Average vs Marginal ELCC

- Average ELCC the ELCC for a class of resources is equal to the ELCC value for the class divided by the total maximum net capability of the class.
- Marginal ELCC the ELCC for a class of resources is equal to the ELCC value associated with the last MW in the class.
- Both average and marginal results are the result of the same ELCC study.

www.monitoringanalytics.com

Simultaneous ELCC: Average vs Marginal

Simultaneous Marginal ELCC

- Use of marginal ELCC results in correct measurement of total resource value.
 - Area under the curve
- Use of marginal ELCC results in correct measurement of resource performance obligation.
- Use of marginal ELCC results in correct payment to resources.

www.monitoringanalytics.com

Prices and Revenues with Marginal ELCC

- If a 100 MW solar resource clears, the obligation is to provide 100 MW of solar when conditions allow.
 - Regardless of marginal ELCC.
- If a 100 MW solar resource clears with a marginal ELCC of 1.0, effective MW = 100 MW:
 - 100 MW * 1.0 = 100 MW
- If a 100 MW solar resource clears with a marginal ELCC of 0.5, effective MW = 50 MW:
 - 100 MW * 0.5 = 50 MW

Prices and Revenues with Marginal ELCC

- If a 100 MW solar resource clears at \$1.00 per MW-day, with a marginal ELCC of 1.0, revenue is:
 - 100 MW * 1.0 * \$1 = \$100 per day
- If a 100 MW solar resource clears at \$1.00 per MW-day, with a marginal ELCC of 0.5, revenue is:
 - 100MW * .0.5 * \$1/0.5 = \$100 per day

www.monitoringanalytics.com

Prices and Revenues with Marginal ELCC

- The price per effective MW will vary with the ELCC.
- The total payment to the resource is always equal to or greater than the offer, regardless of the marginal ELCC.

www.monitoringanalytics.com

Marginal ELCC Payment Example

- Intermittent resource with 100 MW maximum capability offers at \$15 per MW-day
 - Payment: (\$ 15 x 100 x 365) = \$547,550 per DY
 - If unit is marginal. Payment greater if inframarginal.
- If resource clears and marginal ELCC is 10 percent:
 - Effective capacity is (100 MW x 0.10) = 10 MW
 - Offer per effective MW is (\$15 / 0.10) = \$150.00 per MWday
 - Offer for delivery year is \$150 x 10 x 365 = \$547,500 per DY

www.monitoringanalytics.com

Marginal ELCC and Effective Offers

Marginal ELCC Percent	Effective Offer (\$ per MW-day)	Effective Offer (\$ per DY)
100%	\$15.00	\$547,500
80%	\$18.75	\$547,500
50%	\$30.00	\$547,500
40%	\$37.50	\$547,500
30%	\$50.00	\$547,500
20%	\$75.00	\$547,500
10%	\$150.00	\$547,500
5%	\$300.00	\$547,500
1%	\$1,500.00	\$547,500

©2020

www.monitoringanalytics.com

19

Monitoring Analytics, LLC 2621 Van Buren Avenue Suite 160 Eagleville, PA 19403 (610) 271-8050

MA@monitoringanalytics.com www.MonitoringAnalytics.com

20

www.monitoringanalytics.com

©2020